Startseite Evaluation of radiation absorption capacity of some soil samples
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of radiation absorption capacity of some soil samples

  • Mohammed I. Sayyed EMAIL logo , Ferdi Akman , Veysel Turan und Aslı Araz
Veröffentlicht/Copyright: 4. September 2018

Abstract

The aim of the present work is to investigate the radiation absorption capacity of different soil samples in Turkey. For this purpose, we used a γ ray transmission geometry to measure the mass attenuation coefficients of eight soil samples collected between Bingöl city and Solhan district, Turkey at different γ-ray energies in the range of 13.94–88.04 keV. The radioactive sources utilized in the experiment were 241Am, 109Cd and 133Ba. FFAST and WinXCOM programs were used to evaluate the theoretical mass attenuation coefficients values of the selected soil samples. There is a good agreement between experimental and theoretical results. Additionally, the mass attenuation coefficients values used to evaluate different radiation shielding parameters such as effective atomic number, half value layer and mean free path. The variation of shielding parameters was examined for soil composition and photon energy. The obtained results revealed that S6 soil sample is the best soil in terms of shielding effectiveness among all the collected soils due to lower values for half value layer and mean free path. The effective removal cross-section (ΣR) of fast neutrons for the collected soils was also computed to examine neutrons shielding properties of the soil samples. It is found that the ΣR values for the soil samples are almost constant and lie within the range (0.04286–0.04949 cm−1).

References

1. Mudahar, G. S., Modi, S., Singh, M.: Total and partial mass attenuation coefficients of soil as a fuction of chemical composition. Appl. Radiat. Isotopes. 42(1), 13 (1991).10.1016/0883-2889(91)90118-KSuche in Google Scholar

2. Medhat, M. A.: Application of gamma-ray transmission method for study the properties of cultivated soil. Ann. Nucl. Energy. 40, 53 (2012).10.1016/j.anucene.2011.10.010Suche in Google Scholar

3. Alam, M. N., Miah, M. M. H., Chowdhury, M. I., Kamal, M., Ghose, S., Rahman, R.: Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276–1332 keV. Appl. Radiat. Isotopes. 54, 973 (2001).10.1016/S0969-8043(00)00354-7Suche in Google Scholar

4. Medhat, M. E., Demir, N., Tarim, U. A., Gurler, O.: Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods. Radiat. Eff. Defect. S. 169(8), 706 (2014).10.1080/10420150.2014.918129Suche in Google Scholar

5. Tarim, U. A., Gurler, O., Ozmutlu, E. N., Yalcin, S.: Monte Carlo calculations for gamma-ray mass attenuation coefficients of some soil samples. Ann. Nucl. Energy. 58, 198 (2013).10.1016/j.anucene.2013.03.021Suche in Google Scholar

6. Moreira, A. C., Appoloni, C. R.: Mass attenuation coefficient of the Earth, Moon and Mars samples over 1 keV–100 GeV energy range. Appl. Radiat. Isotopes. 64, 1065 (2006).10.1016/j.apradiso.2006.04.002Suche in Google Scholar

7. Al-Masri, M. S., Hasan, M., Al-Hamwi, A., Amin, Y., Doubal, A. W.: Mass attenuation coefficients os soil and sediment samples using gamma energies from 46.5 to 1332 keV. J. Environ. Radioactiv. 116, 28 (2013).10.1016/j.jenvrad.2012.09.008Suche in Google Scholar

8. Appoloni, C. R., Rios, E. A.: Mass attenuation coefficients of Brazilian soils in the range 10–1450 keV. Appl. Radiat. Isotopes. 45(3), 287 (1994).10.1016/0969-8043(94)90041-8Suche in Google Scholar

9. Costa, J. C., Borges, J. A. R., Pires, L. F., Arthur, R. C. J., Bacchi, O. O. S.: Soil mass attenuation coefficient: Analysis and evaluation. Ann. Nucl. Energy. 64, 206 (2014).10.1016/j.anucene.2013.10.006Suche in Google Scholar

10. Taqi, A. H., Khalil, H. J.: An investigation on gamma attenuation of soil and oil-soil samples. J. Radiat. Researc. Appl. Sci. 10(3), 252 (2017).10.1016/j.jrras.2017.05.008Suche in Google Scholar

11. Mann, K. S., Kaur, B. K., Sidhu, G. S., Kumar, A.: Investigations of some building materials for γ-rays shielding effectiveness. Radiat. Phys. Chem. 87, 16 (2013).10.1016/j.radphyschem.2013.02.012Suche in Google Scholar

12. Kucuk, N., Tumsavas, Z., Cakir, M.: Determining photon energy absorption parameters for different soil samples. J. Radiat. Res. 54, 578 (2013).10.1093/jrr/rrs109Suche in Google Scholar PubMed

13. Bhandal, G. S., Singh, K.: Study of the mass attenuation coefficients and effective atomic numbers in some multielement materials. Appl. Radiat. Isotopes. 44(6), 929 (1993).10.1016/0969-8043(93)90048-FSuche in Google Scholar

14. Cesareo, R., De Asis, J. T., Crestana, S.: Attenuation coefficients and tomographic measurements for soil in the energy range 10–300 keV. Appl. Radiat. Isotopes. 45(5), 613 (1994).10.1016/0969-8043(94)90205-4Suche in Google Scholar

15. Mudahar, G. S., Modi, S., Singh, M.: Energy dependence of the effective atomic number of soils. Indian. J. Phys. 65B(3), 226 (1991).Suche in Google Scholar

16. Mann, K. S., Singla, J., Kumar, V., Sidhu, G. S.: Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials. Ann. Nucl. Energy. 43, 157 (2012).10.1016/j.anucene.2012.01.004Suche in Google Scholar

17. ICRU: Radiation Quantities and Units Reports 33 of the International Commission on Radiation Units and Measurements (1980). ICRU, Bethesda, MD.Suche in Google Scholar

18. Un, A., Sahin, Y.: Determination of mass attenuation coefficients, effective atomic numbers, effective electron numbers and kermas for Earth and Martian soils. Nucl. Instrum. Meth. B. 288, 42 (2012).10.1016/j.nimb.2012.07.031Suche in Google Scholar

19. Tellili, B., Elmahroug, Y., Souga, C.: Calculation of fast neutron removal cross sections for different lunar soils. Adv. Space Res. 53, 348 (2014).10.1016/j.asr.2013.10.023Suche in Google Scholar

20. Blizard, E. P., Abbott, L. S.: Reactor Handbook, Part B, Shielding, vol. III (1962), Interscience, New York.Suche in Google Scholar

21. Sayyed, M. I.: Investigation of shielding parameters for smart polymers. Chinese J. Phys. 54, 408 (2016).10.1016/j.cjph.2016.05.002Suche in Google Scholar

22. Dong, M. G., Sayyed, M. I., Lakshminarayana, G., Ersundu, M. Ç., Ersundu, A. E., Nayar, P., Mahdi, M. A.: Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids. 468, 12 (2017).10.1016/j.jnoncrysol.2017.04.018Suche in Google Scholar

23. Sayyed, M. I., Lakshminarayana, G., Kityk, I. V., Mahdi, M. A.: Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 139, 33 (2017).10.1016/j.radphyschem.2017.05.013Suche in Google Scholar

24. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H.: X-ray absorption in matter: reengineering XCOM. Radiat. Phys. Chem. 60, 23 (2001).10.1016/S0969-806X(00)00324-8Suche in Google Scholar

25. Chantler, C. T.: Theoretical form factor, attenuation and scattering tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV. J. Phys. Chem. Ref. Data. 24(1), 71 (1995).10.1063/1.555974Suche in Google Scholar

26. Kumar, A., Sayyed, M. I., Dong, M., Xue, X.: Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Non-Cryst. Solids. 48, 604 (2018).10.1016/j.jnoncrysol.2017.12.001Suche in Google Scholar

27. Lakshminarayana, G., Baki, S. O., Kaky, K. M., Sayyed, M. I., Tekin, H. O., Lira, A., Kityk, I. V., Mahdi, M. A.:. Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids. 471, 222 (2017).10.1016/j.jnoncrysol.2017.06.001Suche in Google Scholar

28. Lakshminarayana, G., Kumar, A., Dong, M. G., Sayyed, M. I., Long, V. I., Mahdi, M. A.: Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Non-Cryst. Solids. 481, 65 (2018).10.1016/j.jnoncrysol.2017.10.027Suche in Google Scholar

29. Akman, F., Kaçal, M. R., Akman, F., Soylu, M. S.: Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005 (2017).10.1139/cjp-2016-0811Suche in Google Scholar

30. Akman, F., Durak, R., Kaçal, M. R., Bezgin, F.: Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrom. 45, 103 (2016).10.1002/xrs.2676Suche in Google Scholar

31. Akman, F., Durak, R., Turhan, M. F., Kacal, M. R.: Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isotopes. 101, 107 (2015).10.1016/j.apradiso.2015.04.001Suche in Google Scholar PubMed

32. Sayyed, M. I., Elhouichet, H.: Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem. 130, 335 (2017).10.1016/j.radphyschem.2016.09.019Suche in Google Scholar

33. El-bashir, B. O., Sayyed, M. I., Zaid, M. H. M., Matori, K. A.: Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids. 468, 92 (2017).10.1016/j.jnoncrysol.2017.04.031Suche in Google Scholar

34. Singh, V. P., Medhat, M. E., Badiger, N. M.: Photon energy absorption coefficients for nuclear track detector susing Geant4 Monte Carlo simulation. Radiat. Phys. Chem. 106, 83 (2015).10.1016/j.radphyschem.2014.07.001Suche in Google Scholar

35. Hubbell, J. H., Seltzer, S. M.: Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. Available at: http://www.nist.gov/pml/data/xraycoef/index.cfm. (1995).10.6028/NIST.IR.5632Suche in Google Scholar

36. Wood, J.: Computational Methods in Reactor Shielding (1982), Pergamon Press, New York.Suche in Google Scholar

37. Kaplan, M. F.: Concrete Radiation Shielding (1989), Wiley, New York.Suche in Google Scholar

38. El-Khayatt, A. M.: Calculation of fast neutron removal cross sections for some compounds and materials. Ann. Nucl. Eng. 37, 218 (2010).10.1016/j.anucene.2009.10.022Suche in Google Scholar

39. Obaid, S. S., Gaikwad, D. K., Pawar, P. P.: Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356 (2018).10.1016/j.radphyschem.2017.09.022Suche in Google Scholar

40. Kaewkhao, J., Laopaiboon, J., Chewpraditkul, W.: Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. J. Quant. Spectrosc. Radiat. Transf. 109, 1260 (2008).10.1016/j.jqsrt.2007.10.007Suche in Google Scholar

41. Singh, V. P., Badiger, N. M., El-Khayatt, A. M.: Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials. Radiat. Eff. Defect. S. 169, 547 (2014).10.1080/10420150.2014.905942Suche in Google Scholar

42. Bagheri, R., Moghaddam, A. K., Yousefnia, H.: Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49, 216 (2017).10.1016/j.net.2016.08.013Suche in Google Scholar

Received: 2018-05-28
Accepted: 2018-07-19
Published Online: 2018-09-04
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2996/html
Button zum nach oben scrollen