Abstract
The aim of the present work is to investigate the radiation absorption capacity of different soil samples in Turkey. For this purpose, we used a γ ray transmission geometry to measure the mass attenuation coefficients of eight soil samples collected between Bingöl city and Solhan district, Turkey at different γ-ray energies in the range of 13.94–88.04 keV. The radioactive sources utilized in the experiment were 241Am, 109Cd and 133Ba. FFAST and WinXCOM programs were used to evaluate the theoretical mass attenuation coefficients values of the selected soil samples. There is a good agreement between experimental and theoretical results. Additionally, the mass attenuation coefficients values used to evaluate different radiation shielding parameters such as effective atomic number, half value layer and mean free path. The variation of shielding parameters was examined for soil composition and photon energy. The obtained results revealed that S6 soil sample is the best soil in terms of shielding effectiveness among all the collected soils due to lower values for half value layer and mean free path. The effective removal cross-section (ΣR) of fast neutrons for the collected soils was also computed to examine neutrons shielding properties of the soil samples. It is found that the ΣR values for the soil samples are almost constant and lie within the range (0.04286–0.04949 cm−1).
References
1. Mudahar, G. S., Modi, S., Singh, M.: Total and partial mass attenuation coefficients of soil as a fuction of chemical composition. Appl. Radiat. Isotopes. 42(1), 13 (1991).10.1016/0883-2889(91)90118-KSuche in Google Scholar
2. Medhat, M. A.: Application of gamma-ray transmission method for study the properties of cultivated soil. Ann. Nucl. Energy. 40, 53 (2012).10.1016/j.anucene.2011.10.010Suche in Google Scholar
3. Alam, M. N., Miah, M. M. H., Chowdhury, M. I., Kamal, M., Ghose, S., Rahman, R.: Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276–1332 keV. Appl. Radiat. Isotopes. 54, 973 (2001).10.1016/S0969-8043(00)00354-7Suche in Google Scholar
4. Medhat, M. E., Demir, N., Tarim, U. A., Gurler, O.: Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods. Radiat. Eff. Defect. S. 169(8), 706 (2014).10.1080/10420150.2014.918129Suche in Google Scholar
5. Tarim, U. A., Gurler, O., Ozmutlu, E. N., Yalcin, S.: Monte Carlo calculations for gamma-ray mass attenuation coefficients of some soil samples. Ann. Nucl. Energy. 58, 198 (2013).10.1016/j.anucene.2013.03.021Suche in Google Scholar
6. Moreira, A. C., Appoloni, C. R.: Mass attenuation coefficient of the Earth, Moon and Mars samples over 1 keV–100 GeV energy range. Appl. Radiat. Isotopes. 64, 1065 (2006).10.1016/j.apradiso.2006.04.002Suche in Google Scholar
7. Al-Masri, M. S., Hasan, M., Al-Hamwi, A., Amin, Y., Doubal, A. W.: Mass attenuation coefficients os soil and sediment samples using gamma energies from 46.5 to 1332 keV. J. Environ. Radioactiv. 116, 28 (2013).10.1016/j.jenvrad.2012.09.008Suche in Google Scholar
8. Appoloni, C. R., Rios, E. A.: Mass attenuation coefficients of Brazilian soils in the range 10–1450 keV. Appl. Radiat. Isotopes. 45(3), 287 (1994).10.1016/0969-8043(94)90041-8Suche in Google Scholar
9. Costa, J. C., Borges, J. A. R., Pires, L. F., Arthur, R. C. J., Bacchi, O. O. S.: Soil mass attenuation coefficient: Analysis and evaluation. Ann. Nucl. Energy. 64, 206 (2014).10.1016/j.anucene.2013.10.006Suche in Google Scholar
10. Taqi, A. H., Khalil, H. J.: An investigation on gamma attenuation of soil and oil-soil samples. J. Radiat. Researc. Appl. Sci. 10(3), 252 (2017).10.1016/j.jrras.2017.05.008Suche in Google Scholar
11. Mann, K. S., Kaur, B. K., Sidhu, G. S., Kumar, A.: Investigations of some building materials for γ-rays shielding effectiveness. Radiat. Phys. Chem. 87, 16 (2013).10.1016/j.radphyschem.2013.02.012Suche in Google Scholar
12. Kucuk, N., Tumsavas, Z., Cakir, M.: Determining photon energy absorption parameters for different soil samples. J. Radiat. Res. 54, 578 (2013).10.1093/jrr/rrs109Suche in Google Scholar PubMed
13. Bhandal, G. S., Singh, K.: Study of the mass attenuation coefficients and effective atomic numbers in some multielement materials. Appl. Radiat. Isotopes. 44(6), 929 (1993).10.1016/0969-8043(93)90048-FSuche in Google Scholar
14. Cesareo, R., De Asis, J. T., Crestana, S.: Attenuation coefficients and tomographic measurements for soil in the energy range 10–300 keV. Appl. Radiat. Isotopes. 45(5), 613 (1994).10.1016/0969-8043(94)90205-4Suche in Google Scholar
15. Mudahar, G. S., Modi, S., Singh, M.: Energy dependence of the effective atomic number of soils. Indian. J. Phys. 65B(3), 226 (1991).Suche in Google Scholar
16. Mann, K. S., Singla, J., Kumar, V., Sidhu, G. S.: Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials. Ann. Nucl. Energy. 43, 157 (2012).10.1016/j.anucene.2012.01.004Suche in Google Scholar
17. ICRU: Radiation Quantities and Units Reports 33 of the International Commission on Radiation Units and Measurements (1980). ICRU, Bethesda, MD.Suche in Google Scholar
18. Un, A., Sahin, Y.: Determination of mass attenuation coefficients, effective atomic numbers, effective electron numbers and kermas for Earth and Martian soils. Nucl. Instrum. Meth. B. 288, 42 (2012).10.1016/j.nimb.2012.07.031Suche in Google Scholar
19. Tellili, B., Elmahroug, Y., Souga, C.: Calculation of fast neutron removal cross sections for different lunar soils. Adv. Space Res. 53, 348 (2014).10.1016/j.asr.2013.10.023Suche in Google Scholar
20. Blizard, E. P., Abbott, L. S.: Reactor Handbook, Part B, Shielding, vol. III (1962), Interscience, New York.Suche in Google Scholar
21. Sayyed, M. I.: Investigation of shielding parameters for smart polymers. Chinese J. Phys. 54, 408 (2016).10.1016/j.cjph.2016.05.002Suche in Google Scholar
22. Dong, M. G., Sayyed, M. I., Lakshminarayana, G., Ersundu, M. Ç., Ersundu, A. E., Nayar, P., Mahdi, M. A.: Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids. 468, 12 (2017).10.1016/j.jnoncrysol.2017.04.018Suche in Google Scholar
23. Sayyed, M. I., Lakshminarayana, G., Kityk, I. V., Mahdi, M. A.: Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 139, 33 (2017).10.1016/j.radphyschem.2017.05.013Suche in Google Scholar
24. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H.: X-ray absorption in matter: reengineering XCOM. Radiat. Phys. Chem. 60, 23 (2001).10.1016/S0969-806X(00)00324-8Suche in Google Scholar
25. Chantler, C. T.: Theoretical form factor, attenuation and scattering tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV. J. Phys. Chem. Ref. Data. 24(1), 71 (1995).10.1063/1.555974Suche in Google Scholar
26. Kumar, A., Sayyed, M. I., Dong, M., Xue, X.: Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Non-Cryst. Solids. 48, 604 (2018).10.1016/j.jnoncrysol.2017.12.001Suche in Google Scholar
27. Lakshminarayana, G., Baki, S. O., Kaky, K. M., Sayyed, M. I., Tekin, H. O., Lira, A., Kityk, I. V., Mahdi, M. A.:. Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids. 471, 222 (2017).10.1016/j.jnoncrysol.2017.06.001Suche in Google Scholar
28. Lakshminarayana, G., Kumar, A., Dong, M. G., Sayyed, M. I., Long, V. I., Mahdi, M. A.: Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Non-Cryst. Solids. 481, 65 (2018).10.1016/j.jnoncrysol.2017.10.027Suche in Google Scholar
29. Akman, F., Kaçal, M. R., Akman, F., Soylu, M. S.: Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005 (2017).10.1139/cjp-2016-0811Suche in Google Scholar
30. Akman, F., Durak, R., Kaçal, M. R., Bezgin, F.: Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrom. 45, 103 (2016).10.1002/xrs.2676Suche in Google Scholar
31. Akman, F., Durak, R., Turhan, M. F., Kacal, M. R.: Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isotopes. 101, 107 (2015).10.1016/j.apradiso.2015.04.001Suche in Google Scholar PubMed
32. Sayyed, M. I., Elhouichet, H.: Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem. 130, 335 (2017).10.1016/j.radphyschem.2016.09.019Suche in Google Scholar
33. El-bashir, B. O., Sayyed, M. I., Zaid, M. H. M., Matori, K. A.: Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids. 468, 92 (2017).10.1016/j.jnoncrysol.2017.04.031Suche in Google Scholar
34. Singh, V. P., Medhat, M. E., Badiger, N. M.: Photon energy absorption coefficients for nuclear track detector susing Geant4 Monte Carlo simulation. Radiat. Phys. Chem. 106, 83 (2015).10.1016/j.radphyschem.2014.07.001Suche in Google Scholar
35. Hubbell, J. H., Seltzer, S. M.: Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. Available at: http://www.nist.gov/pml/data/xraycoef/index.cfm. (1995).10.6028/NIST.IR.5632Suche in Google Scholar
36. Wood, J.: Computational Methods in Reactor Shielding (1982), Pergamon Press, New York.Suche in Google Scholar
37. Kaplan, M. F.: Concrete Radiation Shielding (1989), Wiley, New York.Suche in Google Scholar
38. El-Khayatt, A. M.: Calculation of fast neutron removal cross sections for some compounds and materials. Ann. Nucl. Eng. 37, 218 (2010).10.1016/j.anucene.2009.10.022Suche in Google Scholar
39. Obaid, S. S., Gaikwad, D. K., Pawar, P. P.: Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356 (2018).10.1016/j.radphyschem.2017.09.022Suche in Google Scholar
40. Kaewkhao, J., Laopaiboon, J., Chewpraditkul, W.: Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. J. Quant. Spectrosc. Radiat. Transf. 109, 1260 (2008).10.1016/j.jqsrt.2007.10.007Suche in Google Scholar
41. Singh, V. P., Badiger, N. M., El-Khayatt, A. M.: Study on γ-ray exposure buildup factors and fast neutron-shielding properties of some building materials. Radiat. Eff. Defect. S. 169, 547 (2014).10.1080/10420150.2014.905942Suche in Google Scholar
42. Bagheri, R., Moghaddam, A. K., Yousefnia, H.: Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49, 216 (2017).10.1016/j.net.2016.08.013Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Development of nuclear chemistry at Mainz and Darmstadt
- Extraction behavior of rutherfordium as a cationic fluoride complex with a TTA chelate extractant from HF/HNO3 acidic solutions
- Measurements of activation cross sections by cyclic activation method for (n,2n) reaction on 144Sm isotope around 14 MeV neutron energy
- The diffusion of 75Se(IV) in Beishan granite – temperature, oxygen condition and ionic strength effects
- Kinetic and equilibrium studies of Cs(I), Sr(II) and Eu(III) adsorption on a natural sandy soil
- Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions
- Evaluation of radiation absorption capacity of some soil samples
Artikel in diesem Heft
- Frontmatter
- Development of nuclear chemistry at Mainz and Darmstadt
- Extraction behavior of rutherfordium as a cationic fluoride complex with a TTA chelate extractant from HF/HNO3 acidic solutions
- Measurements of activation cross sections by cyclic activation method for (n,2n) reaction on 144Sm isotope around 14 MeV neutron energy
- The diffusion of 75Se(IV) in Beishan granite – temperature, oxygen condition and ionic strength effects
- Kinetic and equilibrium studies of Cs(I), Sr(II) and Eu(III) adsorption on a natural sandy soil
- Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions
- Evaluation of radiation absorption capacity of some soil samples