Abstract
The adsorptive extraction of uranium (VI) was investigated using multiwalled carbon nanotubes functionalized with dihydroimidazole (DIM-MWCNTs). Dihydroimidazole was grafted onto the surface of MWCNTs via silane coupling agent, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole. The new adsorbent was characterized using Fourier transform infrared, scanning electron microscope and X-ray Photoelectron Spectroscopy. DIM-MWCNTs were compared with MWCNTs and amidoxime modified MWCNTs (AO-MWCNTs) for uranium adsorption under seawater conditions. The adsorption capacity of uranium onto DIM-MWCNTs was 54.9 mg g−1 at 298 K, which was about 4 times of MWCNTs and similar to that of AO-MWCNTs. Compared with AO-MWCNTs, DIM-MWCNTs were more suitable for seawater pH, and less affected by vanadium. Although DIM-MWCNTs were more affected by carbonate than AO-MWCNTs, DIM-MWCNTs maintained a higher adsorption capacity than AO-MWCNTs due to its alkali resistance. Pyridine-like nitrogen (CH=N–CH) contributed to the adsorption of uranium. The results suggested that DIM-MWCNTs were a potential effective adsorbent for the separation of uranium under seawater condition.
Acknowledgements
The research was supported by the National Key Research and Development Program (2016YFC1402507), the National S&T Major Project (2013ZX06002001), the National Natural Science Foundation of China (51338005) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13026).
References
1. Chen, C., Wang, J. L.: Uranium removal by novel graphene oxide-immobilized Saccharomyces cerevisiae gel beads. J. Environ. Radioact. 162, 134 (2016).10.1016/j.jenvrad.2016.05.012Search in Google Scholar PubMed
2. Djogic, R., Branica, M.: Uranyl mixed-ligand complex formation in artificial seawater. Chem. Spec. Bioavailab. 5, 101 (1993).10.1080/09542299.1993.11083209Search in Google Scholar
3. Suzuki, T., Saito, K., Sugo, T., Ogura, H., Oguma, K.: Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater. Anal. Sci. 16, 429 (2000).10.2116/analsci.16.429Search in Google Scholar
4. Aly, M. M., Hamza, M. F.: A review: studies on uranium removal using different techniques. Overview. J. Dispersion Sci. Technol. 34, 182 (2013).10.1080/01932691.2012.657954Search in Google Scholar
5. Sugasaka, K., Katoh, S., Taka, N., Takahashi, H., Imezawa, Y.: Recovery of uranium from seawater. Sep. Sci. Technol. 16, 971 (1981).10.1080/01496398108057594Search in Google Scholar
6. Hori, T., Yamawaki, M., Kanno, M.: Uranium adsorption properties of hydrous titanium oxides in seawater. J. Nucl. Sci. Technol. 24, 377 (1987).10.1080/18811248.1987.9735817Search in Google Scholar
7. Sakaguchi, T., Nakajima, A.: Recovery of uranium from seawater by immobilized tannin. Sep. Sci. Technol. 22, 1609 (1987).10.1080/01496398708058421Search in Google Scholar
8. Wang, J. L., Chen, C.: Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129 (2014).10.1016/j.biortech.2013.12.110Search in Google Scholar PubMed
9. Wang, J. L., Chen, C.: Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195 (2009).10.1016/j.biotechadv.2008.11.002Search in Google Scholar PubMed
10. Wang, J. L., Chen, C.: Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24, 427 (2006).10.1016/j.biotechadv.2006.03.001Search in Google Scholar PubMed
11. Zhuang, S. T., Cheng, R., Kang, M., Wang, J. L.: Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J. Clean. Prod. 188, 655 (2018).10.1016/j.jclepro.2018.04.047Search in Google Scholar
12. Vukovic, S., Watson, L. A., Kang, S. O., Custelcean, R., Hay, B. P.: How amidoximate binds the uranyl cation. Inorg. Chem. 51, 3855 (2012).10.1021/ic300062sSearch in Google Scholar PubMed
13. Zhang, A. Y., Asakura, T., Uchiyama, G.: The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 57, 67 (2003).10.1016/j.reactfunctpolym.2003.07.005Search in Google Scholar
14. Zhang, A. Y., Uchiyama, G., Asakura, T.: pH effect on the uranium adsorption from seawater by a macroporous fibrous polymeric material containing amidoxime chelating functional group. React. Funct. Polym. 63, 143 (2005).10.1016/j.reactfunctpolym.2005.02.015Search in Google Scholar
15. Guo, X. J., Wang, Y. X., Li, C., Huai, P., Wu, G. Z.: Optimum complexation of uranyl with amidoxime in aqueous solution under different pH levels: density functional theory calculations. Mol. Phys. 113, 1327 (2015).10.1080/00268976.2014.993732Search in Google Scholar
16. Wazne, M., Korfiatis, G. P., Meng, X. G.: Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol. 37, 3619 (2003).10.1021/es034166mSearch in Google Scholar PubMed
17. Wazne, M., Meng, X. G., Korfiatis, G. P., Christodoulatos, C.: Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide. J. Hazard. Mater. 136, 47 (2006).10.1016/j.jhazmat.2005.11.010Search in Google Scholar PubMed
18. Bachmaf, S., Planer-Friedrich, B., Merkel, B. J.: Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite. Radiochim. Acta 96, 359 (2008).10.1524/ract.2008.1496Search in Google Scholar
19. Nibel, O., Bon, M., Agiorgousis, M. L., Laino, T., Gubler, L., Schmidt, T. J.: Unraveling the interaction mechanism between amidoxime groups and vanadium ions at various pH conditions. J. Phys. Chem. C 121, 6436 (2017).10.1021/acs.jpcc.6b12540Search in Google Scholar
20. Bolotin, D. S., Bokach, N. A., Kukushkin, V. Y.: Coordination chemistry and metal-involving reactions of amidoximes: relevance to the chemistry of oximes and oxime ligands. Coord. Chem. Rev. 313, 62 (2016).10.1016/j.ccr.2015.10.005Search in Google Scholar
21. Kavakli, P. A., Seko, N., Tamada, M., Güven, O.: Adsorption efficiency of a new adsorbent towards uranium and vanadium ions at low concentrations. Sep. Sci. Technol. 39, 1631 (2005).10.1081/SS-120030785Search in Google Scholar
22. Gao, Q. H., Hu, J. T., Li, R., Xing, Z., Xu, L., Wang, M. H., Guo, X. J., Wu, G. Z.: Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat. Phys. Chem. 122, 1 (2016).10.1016/j.radphyschem.2015.12.023Search in Google Scholar
23. Ivanov, A. S., Bryantsev, V. S.: Assessing ligand selectivity for uranium over vanadium ions to aid in the discovery of superior adsorbents for extraction of UO22+ from seawater. Dalton Trans. 45, 10744 (2016).10.1039/C6DT01752ESearch in Google Scholar
24. Zhang, L. X., Yang, S., Qian, J., Hua, D. B.: Surface ion-imprinted polypropylene nonwoven fabric for potential uranium seawater extraction with high selectivity over vanadium. Ind. Eng. Chem. Res. 56, 1860 (2017).10.1021/acs.iecr.6b04389Search in Google Scholar
25. Pekel, N., Güven, O.: Separation of uranyl ions with amidoximated poly (acrylonitrile/N-vinylimidazole) complexing sorbents. Colloids Surf. A 212, 155 (2003).10.1016/S0927-7757(02)00297-2Search in Google Scholar
26. Qian, J., Zhang, S., Zhou, Y., Dong, P., Hua, D. B.: Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of uranium(VI). RSC Adv. 5, 4153 (2014).10.1039/C4RA10037ASearch in Google Scholar
27. Kitagaki, T., Kaneshiki, T., Nomura. M., Suzuki. T.: Uranium separation from a simulant fuel debris solution using a benzimidazole-type anion exchange resin. J. Nucl. Sci. Technol. 53, 1639 (2016).10.1080/00223131.2016.1150219Search in Google Scholar
28. Li, J., Yang, X. D., Bai. C. Y., Tian, Y., Li, B., Zhang, S., Yang, X. Y., Ding, S. D., Xia, C. Q., Tan. X. Y.: A novel benzimidazole-functionalized 2-D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium. J. Colloid Interface Sci. 437, 211 (2015).10.1016/j.jcis.2014.09.046Search in Google Scholar PubMed
29. Yuan, L. Y., Liu, Y. L., Shi, W. Q., Li, Z., Lan, J. H., Feng, Y. X., Zhao, Y. L., Yuan, Y. L., Chai, Z. F.: A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. J. Mater. Chem. 22, 17019 (2012).10.1039/c2jm31766dSearch in Google Scholar
30. Zhu, L., Yuan, L. Y., Xia. L. S., Wang, L.: Incorporation of magnetism into the dihydroimidazole functionalized mesoporous silica for convenient U(VI) capture. J. Radioanal. Nucl. Chem. 308, 447 (2016).10.1007/s10967-015-4391-zSearch in Google Scholar
31. Nie, B. W., Zhang, Z. B., Cao, X. H., Liu, Y. H., Liang. P.: Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J. Radioanal. Nucl. Chem. 295, 663 (2013).10.1007/s10967-012-1820-0Search in Google Scholar
32. Zhao, Y. S., Liu, C. X., Feng, M., Chen, Z., Li, S. Q., Tian, G., Wang, L., Huang, J. B., Li, S. J.: Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J. Hazard. Mater. 176, 119 (2010).10.1016/j.jhazmat.2009.11.005Search in Google Scholar PubMed
33. Chen, S. P., Hong, J. X., Yang, H. X., Yang, J. Z.: Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J. Environ. Radioact. 126, 253 (2013).10.1016/j.jenvrad.2013.09.002Search in Google Scholar PubMed
34. Song, Q., Ma, L. J., Liu, J., Bai, C. Y., Geng, J. X., Wang, H., Li, B., Wang, L. Y., Li, S. J.: Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J. Colloid Interface Sci. 386, 291 (2012).10.1016/j.jcis.2012.07.070Search in Google Scholar PubMed
35. Wang, H., Ma, L. J., Cao, K. C., Geng, J. X., Liu, J., Song, Q., Yang, X. D., Li, S. J.: Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J. Hazard. Mater. 229, 321 (2012).10.1016/j.jhazmat.2012.06.004Search in Google Scholar PubMed
36. Yang, X. D., Li, J., Liu, J., Tian, Y., Li, B., Cao, K. C., Liu, S. B., Hou, M., Li, S. J., Ma, L. J.: Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J. Mater. Chem. A 2, 1550(2013).10.1039/C3TA13949BSearch in Google Scholar
37. Bo, L., Ma, L. J., Tian, Y., Yang, X. D., Li, J., Bai, C. Y., Yang, X. Y., Zhang, S., Li, S. J., Jin, Y. D.: A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J. Hazard. Mater. 271, 41 (2014).10.1016/j.jhazmat.2014.01.060Search in Google Scholar PubMed
38. Schierz, A., Zänker, H., Nowack, B.: Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ. Pollut. 157, 1088 (2009).10.1016/j.envpol.2008.09.045Search in Google Scholar PubMed
39. Shao, D. D., Jiang, Z. Q., Wang, X. K., Li, J. X., Meng, Y. D.: Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution. J. Phys. Chem. B 113, 860 (2009).10.1021/jp8091094Search in Google Scholar PubMed
40. Sun, Y. B., Yang, S. T., Sheng, G. D., Guo, Z. Q., Wang, X. K.: The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Environ. Radioact. 105, 40 (2012).10.1016/j.jenvrad.2011.10.009Search in Google Scholar PubMed
41. Fasfous, I. I., Dawoud, J. N.: Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl. Surf. Sci. 259, 433 (2012).10.1016/j.apsusc.2012.07.062Search in Google Scholar
42. Chen, J. H., Lu, D. Q., Chen, B., Ouyang, P. K.: Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs. J. Radioanal. Nucl. Chem. 295, 2233 (2013).10.1007/s10967-012-2276-ySearch in Google Scholar
43. Tan, L. C., Liu, Q., Jing, X. Y., Liu, J. Y., Song, D. L., Hu, S. X., Liu, L. H., Wang, J.: Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem. Eng. J. 273, 307 (2015).10.1016/j.cej.2015.01.110Search in Google Scholar
44. Wu, J. L., Tian, K., Wang, J. L.: Adsorption of uranium (VI) by amidoxime modified multiwalled carbon nanotubes. Prog. Nucl. Energy 106, 79 (2018).10.1016/j.pnucene.2018.02.020Search in Google Scholar
45. Savvin, S. B.: Photometric estimation of thorium and uranium with the arsenazo-III reagent. Dokl. Akad. Nauk SSSR 127, 1231 (1959).Search in Google Scholar
46. Lyman, J., Fleming, R. H.: Composition of seawater. J. Marine Research 3, 134 (1940).Search in Google Scholar
47. Wang, Y. Q., Zhang, Z. B., Liu, Y. H., Cao, X. H., Liu, Y. T., Li, Q.: Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem. Eng. J. 198, 246 (2012).10.1016/j.cej.2012.05.112Search in Google Scholar
48. Li, W. C., Victor, D. M., Chakrabarti, C. L.: Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions. Anal. Chem. 52, 155 (1980).10.1021/ac50053a033Search in Google Scholar
49. Li, N. C., Doody, B. E., White, J. M.: Some metal complexes of glycine peptides, histidine and related substances. J. Am. Chem. Soc. 79, 5859 (1957).10.1021/ja01579a006Search in Google Scholar
50. Gutowski, K. E., Cocalia, V. A., Griffin, S. T., Bridges, N. J., Dixon, D. A., Rogers, R. D.: Interactions of 1-methylimidazole with UO2(CH3CO2)2 and UO2(NO3)2: structural, spectroscopic, and theoretical evidence for imidazole binding to the uranyl ion. J. Am. Chem. Soc. 129, 526 (2007).10.1021/ja064592iSearch in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Measurement of cross sections and isomeric cross-section ratios for the (n,2n) reactions on 85,87Rb in energies between 13 and 15 MeV
- Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes
- Diatomite modified by TiO2 for adsorption of U(VI)
- Production and separation of no-carrier-added 181−184Re radioisotopes from proton irradiated tungsten target
- Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptor-myocardial perfusion imaging
- Determination of the Sr/Ca ratio of tooth samples by photoactivation analysis in Southern Turkey
- Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L.
- Thermal decomposition of un-irradiated and γ-ray irradiated holmium acetate tetrahydrate. Part 1: kinetics of nonisothermal dehydration of un-irradiated and γ-ray irradiated Ho(CH3COO)3⋅4H2O
- Study of radiotoxic 210Po in Indian tobacco using liquid scintillation spectrometry
- Preliminary investigations on reducing the high radiation risk level of TENORM scale waste from petroleum industry
Articles in the same Issue
- Frontmatter
- Measurement of cross sections and isomeric cross-section ratios for the (n,2n) reactions on 85,87Rb in energies between 13 and 15 MeV
- Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes
- Diatomite modified by TiO2 for adsorption of U(VI)
- Production and separation of no-carrier-added 181−184Re radioisotopes from proton irradiated tungsten target
- Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptor-myocardial perfusion imaging
- Determination of the Sr/Ca ratio of tooth samples by photoactivation analysis in Southern Turkey
- Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L.
- Thermal decomposition of un-irradiated and γ-ray irradiated holmium acetate tetrahydrate. Part 1: kinetics of nonisothermal dehydration of un-irradiated and γ-ray irradiated Ho(CH3COO)3⋅4H2O
- Study of radiotoxic 210Po in Indian tobacco using liquid scintillation spectrometry
- Preliminary investigations on reducing the high radiation risk level of TENORM scale waste from petroleum industry