Startseite Diatomite modified by TiO2 for adsorption of U(VI)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Diatomite modified by TiO2 for adsorption of U(VI)

  • Ni Yuan , Peng Liu und Wangsuo Wu EMAIL logo
Veröffentlicht/Copyright: 19. Mai 2018

Abstract

Diatomite was modified with TiO2. The synthesized materials were characterized and used for removal of U(VI) from aqueous solutions. The influences of pH, contact time and temperature on U(VI) adsorption onto TiO2@diatomite were studied by batch technique, and X-ray photoelectron spectroscopy (XPS) was employed to analyze the experimental data. We compared the adsorption of U(VI) onto natural diatomite, TiO2 and TiO2@diatomite made by sol-gel method. The dynamic process showed that the adsorption of U(VI) onto TiO2@diatomite matched the pseudo-second-order kinetics model, and the adsorption of U(VI) was significantly dependent on pH values. Through simulating the adsorption isotherms by Langmuir, Freundlich and Dubini–Radushkevich (D–R) models, respectively, it could be seen that the adsorption patterns of U(VI) onto TiO2@diatomite were mainly controlled by surface complexation, and the adsorption processes were endothermic and spontaneous. The modification of diatomite by TiO2 shows a novel material for removing U(VI) from water environment for industrialized application.

Acknowledgments

Supported by the National Natural Science Foundation of China (21327801, 41573128, 21601179), the China Postdoctoral Science Foundation (2016M590981) and Fundamental Research Funds for the Central University (lzujbky-2015-70).

References

1. Jemison, N. E., Johnson, T. M., Shiel, A. E., Lundstrom, C. C.: Uranium isotopic fractionation induced by U(VI) adsorption onto common aquifer minerals. Environ. Sci. Technol. 50, 22 (2016).10.1021/acs.est.6b03488Suche in Google Scholar

2. Gu, B., Ku, Y. K., Jardine, P. M.: Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ. Sci. Technol. 38, 11 (2004).10.1021/es034902mSuche in Google Scholar

3. Kryvoruchko, A. P., Yurlova, L. Y., Atamanenko, I. D., Kornilovich, B. Y.: Ultrafiltration removal of U(VI) from contaminated water. Desalination 162, 1 (2004).10.1016/S0011-9164(04)00046-3Suche in Google Scholar

4. Sun, Y., Zhang, R., Ding, C., Wang, X., Cheng, W., Chen, C., Wang X.: Adsorption of U(VI) on sericite in the presence of bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim. Cosmochim. Acta 180, 51, (2016).10.1016/j.gca.2016.02.012Suche in Google Scholar

5. Lu, S., Zhu, H., Gao, H., Meng, Y., Chen, C.: Fabrication of sodium titanate nanospheres as efficient sorbent for the removal of U(VI) from aqueous solution. J. Mol. Liq. 225, 101 (2016).10.1016/j.molliq.2016.11.046Suche in Google Scholar

6. Liu, P., Wu, H., Yuan, N., Liu, Y., Pan, D., Wu, W.: Removal of U(VI) from aqueous solution using synthesized β-zeolite and its ethylenediamine derivative. J. Mol. Liq. 234, 40 (2017).10.1016/j.molliq.2017.03.055Suche in Google Scholar

7. Korunic, Z.: Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 34, 2 (1998).10.1016/S0022-474X(97)00039-8Suche in Google Scholar

8. Meradi, H., Atoui, L., Bahloul, L., Boubendira, K., Bouazdia, A., Ismail, F.: Characterization by thermal analysis of natural kieselguhr and sand for industrial application. Energy Procedia 74, 1282 (2015).10.1016/j.egypro.2015.07.773Suche in Google Scholar

9. Gómez, J., Gil, M. L. A., Rosa-Fox, N. D. L., Alguacil, M.: Formation of siliceous sediments in brandy after diatomite filtration. Food Chem. 170, 84 (2015).10.1016/j.foodchem.2014.08.028Suche in Google Scholar PubMed

10. Wang, B., de Godoi, F. C., Sun, Z., Zeng, Q., Zheng, S., Frost, R. L.: Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J. Colloid Interface Sci. 438, 204 (2015).10.1016/j.jcis.2014.09.064Suche in Google Scholar PubMed

11. Nenadovi, S., Nenadovi, M., Kovaevic, R., Matovi, L.: Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci. Sinter. 41, 3 (2009).10.2298/SOS0903309NSuche in Google Scholar

12. Khraisheh, M. A. M., Al-Degs, Y. S., Mcminn, W. A. M.: Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 99, 2 (2004).10.1016/j.cej.2003.11.029Suche in Google Scholar

13. Salameh, S. I. Y., Khalili, F. I., Al-Dujaili, A. H.: Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data. Int. J. Miner. Process. 168, 9 (2017).10.1016/j.minpro.2017.08.007Suche in Google Scholar

14. Sharipova, A. A., Aidarova, S. B., Bekturganova, N. Y., Tleuova, A., Kerimkulova, M., Yessimova, O., Kairaliyevab, T., Lyginad, O., Lyubchikd, S., Millerb, R.: Triclosan adsorption from model system by mineral sorbent diatomite. Colloid Surf. A 532, 97 (2017).10.1016/j.colsurfa.2017.06.012Suche in Google Scholar

15. Jia, Y., Han, W., Xiong, G., Yang, W.: Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. J. Colloid Interface Sci. 323, 2 (2008).10.1016/j.jcis.2008.04.020Suche in Google Scholar

16. Zhang, Y. L., Yang, J., Yu, X. J.: Preparation, characterization, and adsorption-photocatalytic activity of nano TiO2, embedded in diatomite synthesis materials. Rare Met. 36, 12 (2014).10.1007/s12598-014-0290-7Suche in Google Scholar

17. Wang, Y., He, Y., Lai, Q., Fan, M.: Review of the progress in preparing nano TiO2: an important environmental engineering material. J. Environ. Sci. 26, 11 (2014).10.1016/j.jes.2014.09.023Suche in Google Scholar

18. Pickup, D. M., Mountjoy, G., Wallidge, G. W., Anderson, R., Cole, J. M., Newport, R. J., Smith, M. E.: A structural study of (TiO2)x(SiO2)1−x (x=0.18, 0.30 and 0.41) xerogels prepared using acetylacetone. J. Mater. Chem. 9, 6 (1999).10.1039/a809810gSuche in Google Scholar

19. Dongwook, L., Sonki, I., Kewho, L.: Mesostructure control using a titania-coated silica nanosphere framework with extremely high thermal stability. Chem. Mater. 17, 17 (2005).10.1021/cm050485wSuche in Google Scholar

20. Jung, K. Y., Park, S. B.: Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Appl. Catal. Environ. 25, 4 (2000).10.1016/S0926-3373(99)00134-4Suche in Google Scholar

21. Lu, S., Hu, J., Chen, C., Chen, X., Gong, Y., Sun, Y., Tan, X.: Spectroscopic and modeling investigation of efficient removal of U(VI) on a novel magnesium silicate/diatomite. Sep. Purif. Technol. 174, 425 (2017).10.1016/j.seppur.2016.09.052Suche in Google Scholar

22. Zhang, D., Li, G., Yang, X., Yu, J.C.: A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem. Commun. (Camb.) 29, 29 (2009).10.1039/b907963gSuche in Google Scholar PubMed

23. Jin, Q., Su, L., Montavon, G., Sun, Y., Chen, Z., Guo, Z., Wu, W.: Surface complexation modeling of U(VI) adsorption on granite at ambient/elevated temperature: experimental and XPS study. Chem. Geol. 433, 81 (2016).10.1016/j.chemgeo.2016.04.001Suche in Google Scholar

24. Liu, P., Yuan, N., Xiong, W., Wu, H., Pan, D., Wu, W.: Removal of U(VI) from aqueous solution using TiO2 modified β-zeolite. Radiochim. Acta. 105, 12 (2017).10.1515/ract-2017-2765Suche in Google Scholar

25. Guo, Z. J., Chen, Z. Y., Wu, W. S., Liu, C. L., Chen, T., Tian W. Y., Li, C.: The adsorption of Eu(III) on beishan granite. Scientia Sinica (Chimica) 41, 5 (2011).10.1360/032010-376Suche in Google Scholar

26. Yang, Z. Q., Huang, L., Lu, Y., Guo, Z. J., Montavon, G., Wu, W. S.: Temperature effect on U(VI) sorption onto Na-bentonite. Radiochim. Acta 98, 12 (2010).10.1524/ract.2010.1784Suche in Google Scholar

27. Zhang, J., Guo, Z., Li, Y., Pan, S., Chen, X., Xu, J.: Effect of environmental conditions on the sorption of uranium on Fe3O4@MnO2, hollow spheres. J. Mol. Liq. 223, 534 (2016).10.1016/j.molliq.2016.07.136Suche in Google Scholar

28. Wang, J., Chen, Z., Shao, D., Li, Y., Xu, Z., Cheng, C., Asiri, A. M., Marwani, H. M., Hu, S.: Adsorption of U(VI) on bentonite in simulation environmental conditions. J. Mol. Liq. 242, 678 (2017).10.1016/j.molliq.2017.07.048Suche in Google Scholar

29. Aamrani, F. Z. E., Duro, L., Pablo, J. D., Bruno, J.: Experimental study and modeling of the sorption of uranium(VI) onto olivine-rock. Appl. Geochem. 17, 4 (2002).10.1016/S0883-2927(01)00115-9Suche in Google Scholar

30. Sun, Y., Yang, S., Sheng, G., Guo, Z., Wang, X.: The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Environ. Radioact. 105, 2 (2012).10.1016/j.jenvrad.2011.10.009Suche in Google Scholar

31. Hayes, K. F., Leckie, J. O.: Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci. 115, 2 (1988).10.1016/0021-9797(87)90078-6Suche in Google Scholar

32. Salvestrini, S.: Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. Reac. Kinet. Mech. Cat. 123, 455 (2018).10.1007/s11144-017-1295-7Suche in Google Scholar

33. Ho, Y. S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 5 (1999).10.1016/S0032-9592(98)00112-5Suche in Google Scholar

34. Ho, Y. S., McKay, G.: The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 3 (2000).10.1016/S0043-1354(99)00232-8Suche in Google Scholar

35. Weber, W. J., Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 2 (1963).10.1061/JSEDAI.0000430Suche in Google Scholar

36. Rengaraj, S., Kim, Y., Joo, C. K., Yi, J.: Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium. J. Colloid Interface Sci. 273, 1 (2004).10.1016/j.jcis.2004.01.007Suche in Google Scholar

37. M. Alkan, Ö. Demirbaş, M. Doğan.: Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Mater. 101, 388 (2007).10.1016/j.micromeso.2006.12.007Suche in Google Scholar

38. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 9 (1918).10.1021/ja02242a004Suche in Google Scholar

39. Freundlich, H. M. F.: Over the adsorption in solution. J. Phys. Chem. 57, 385 (1906).Suche in Google Scholar

40. Dubinin, M. M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 2 (1960).10.1021/cr60204a006Suche in Google Scholar

41. Mahmoodi, N. M., Hayati, B., Arami, M., Lan, C.: Adsorption of textile dyes on pine cone, from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination 268, 1 (2011).10.1016/j.desal.2010.10.007Suche in Google Scholar

42. Liu, Y., Yuan, L., Yuan, Y., Lan, J., Li, Z., Feng, Y., Zhao, Y., Chai, Z., Shi, W.: A high efficient sorption of U(VI) from aqueous solution using amino-functionalized sba-15. J. Radioanal. Nucl. Chem. 292, 2 (2012).10.1007/s10967-011-1515-ySuche in Google Scholar

43. Liu, X., Cheng, C., Xiao, C., Shao, D., Xu, Z., Wang, J., Hu, S., Li, X., Wang, W.: Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution. Appl. Surf. Sci. 411, 331 (2017).10.1016/j.apsusc.2017.03.095Suche in Google Scholar

44. Shao, D., Hou, G., Li, J., Wen, T., Ren, X., Wang, X.: PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem. Eng. J. 255, 7 (2014).10.1016/j.cej.2014.06.063Suche in Google Scholar

45. Liu, P., Qi, W., Du, Y. F., Li, Z., Wang, J., Bi, J. J., Wu, W.: Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci. China Chem. 57, 11 (2014).10.1007/s11426-014-5204-xSuche in Google Scholar

46. Lin, S. H., Wang, C. S.: Treatment of high-strength phenolic wastewater by a new two-step method. J. Hazard. Mater. 90, 2 (2002).10.1016/S0304-3894(01)00351-XSuche in Google Scholar

47. Bartell, F. E., Thomas, T. L., Fu, Y.: Thermodynamics of adsorption from solutions. iv. temperature dependence of adsorption. J. Phys. Chem. 55, 9 (1951).10.1021/j150492a005Suche in Google Scholar

48. Ping, L., Zhuoxin, Y., Jianfeng, L., Qiang, J., Yaofang, D., Qiaohui, F., Wu, W.: The immobilization of U(VI) on iron oxyhydroxides under various physicochemical conditions. Environ. Sci. Process Impacts 16, 10 (2014).10.1039/C4EM00301BSuche in Google Scholar PubMed

49. Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J. J.: Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ. Sci. Technol. 38, 5 (2004).10.1021/es0348344Suche in Google Scholar PubMed

50. Fan, Q. H., Li, P., Chen, Y. F., Wu, W. S.: Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution. J. Hazard. Mater. 192, 3 (2011).10.1016/j.jhazmat.2011.07.022Suche in Google Scholar PubMed

Received: 2018-01-05
Accepted: 2018-04-02
Published Online: 2018-05-19
Published in Print: 2018-09-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2923/html
Button zum nach oben scrollen