Thermal decomposition of un-irradiated and γ-ray irradiated holmium acetate tetrahydrate. Part 1: kinetics of nonisothermal dehydration of un-irradiated and γ-ray irradiated Ho(CH3COO)3⋅4H2O
Abstract
Nonisothermal dehydration of un-irradiated and γ-ray irradiated holmium acetate tetrahydrate with 103 kGy total γ-ray dose absorbed was studied in air atmosphere. The thermal decomposition experiments were conducted at heating rates of (5, 7.5 and 10°C/min). The results showed that for un-irradiated material, the dehydration process proceeds in two decomposition steps with the elimination of 3.0 and 1.0 moles of H2O, respectively. The apparent activation energy, Ea, as given by both linear and nonlinear isoconversional methods showed dependence upon the conversion degree, α, in the range of 0.2–0.75 for the two dehydration steps. In the first dehydration step, the Ea decreases from 228.0 kJ/mol at the beginning of the decomposition to ≈64.0 kJ/mol at the end of the process. In the second dehydration step, the Ea increases from 42.0 to 72.0 kJ/mol by progressively increasing in α. Compared with solid state reaction models, the two reactions are best described by diffusion (D4) and nucleation (A3) models for the first and second dehydration steps, respectively. The results derived from nonisothermal data present a reliable prediction of isothermal kinetics. Straight lines and reduced time plots methods were applied for the determination of the kinetic triplet [Ea, ln A, and reaction model f(α)] from predicted isothermal data. For γ-ray irradiated samples of Ho(CH3COO)3⋅4H2O with 103 kGy total absorbed dose, the dehydration proceeds in two overlapped steps controlled by D3 model. X-ray data showed phase transformation from monoclinic (SG P2/m) to tetragonal phase (SG P4/mmm) by the elimination of water content from the entire structure of Ho(CH3COO)3⋅4H2O. γ-Ray irradiation effects on the thermal decomposition of Ho(CH3COO)3⋅4H2O were evaluated and discussed based on the formation of trapped electrons, point defects, cation and anion vacancies and cluster imperfections in the host lattice of Ho(CH3COO)3⋅4H2O.
Acknowledgments
This work is a part of Norhan Farghly Rashwan MSc thesis. The authors like to thank Assiut University for the official technical and financial support.
References
1. Mahfouz, R. M., Ahmed, G. A.-W., Alshammari, M. R.: Application of the model-free approach to the study of non-isothermal decomposition of un-irradiated and γ-irradiated hydrated gadolinium acetylacetonate. Radiat. Eff. Defects Solids 169(6), 490 (2014).10.1080/10420150.2013.877909Suche in Google Scholar
2. Samuel, J., Surendran, A., Culas, S.: Kinetic analysis for non-isothermal decomposition of un-irradiated and gamma-irradiated potassium bromate. J. Radioanal. Nucl. Chem. 295, 53 (2013).10.1007/s10967-012-1916-6Suche in Google Scholar
3. L’vov, B. V.: Review: the physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim. Acta 373, 97 (2001).10.1016/S0040-6031(01)00507-XSuche in Google Scholar
4. Mahfouz, R. M., Monshi, M. A. S., Abd El-Salam, N. M.: Kinetics of the thermal decomposition of γ-gadolinium acetate. Thermochim. Acta 383(1–2), 95 (2002).10.1016/S0040-6031(01)00682-7Suche in Google Scholar
5. Gerasimov, G. Ya.: Reviews: radiation methods in nanotechnology. J. Eng. Phys. Thermophys. 84(4), 947 (2011).10.1007/s10891-011-0554-0Suche in Google Scholar
6. Monshi, M. A. S., Abd El-Salam, N. M., Mahfouz, R. M.: Gamma irradiation effects on the thermal decomposition induction period in uranyl acetate. Thermochim. Acta 327, 139 (1999).10.1016/S0040-6031(98)00598-XSuche in Google Scholar
7. Hussein, G. A. M., Balbool, B. A. A., Mekhemer, G. A. H.: Holmium oxide from holmium acetate, formation and characterization: thermoanalytical studies. J. Anal. Appl. Pyrolysis 56, 263 (2000).10.1016/S0165-2370(00)00100-5Suche in Google Scholar
8. Al-Otaibi, A. M., Al-Wassil, A. I., Siddiqui, M. R. H., Mahfouz, R. M.: Kinetic analysis for the non-isothermal decomposition of un-irradiated and γ-irradiated zirconium acetylacetonate. Prog. React. Kinet. Mech. 37(1), 59 (2012).10.3184/146867811X13095343745013Suche in Google Scholar
9. Mahfouz, R. M., Monshi, M. A. S., Alshehri, S. M., Abd El-Salam, N. M.: Isothermal decomposition of γ-irradiated samarium acetate. Radiat. Phys. Chem. 59, 381 (2000).10.1016/S0969-806X(00)00302-9Suche in Google Scholar
10. Jung, E., Yu, T., Kim, W.-S.: Synthesis of rare earth oxide nanoplates with single unit cell thickness using a thermal decomposition method. Korean J. Chem. Eng. 33(2), 683 (2016).10.1007/s11814-015-0144-5Suche in Google Scholar
11. Kepiński, L., Zawadzki, M., Miśta, W.: Hydrothermal synthesis of precursors of neodymium oxide nanoparticles. Solid State Sci. 6, 1327 (2004).10.1016/j.solidstatesciences.2004.07.003Suche in Google Scholar
12. Heer, S., Lehmann, O., Güdel, H.-U.: Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 42(27), 3179 (2003).10.1002/anie.200351091Suche in Google Scholar
13. Karraker, D. G.: Coordination of lanthanide acetates. J. Inorg. Nucl. Chem. 31, 2815 (1969).10.1016/0022-1902(69)80198-3Suche in Google Scholar
14. Vyazovkin, S., Wight, C. A.: Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53 (1999).10.1016/S0040-6031(99)00253-1Suche in Google Scholar
15. Vyazovkin, S.: Model-free kinetics: staying free of multiplying entities without necessity. J. Therm. Anal. Calorim. 83(1), 45 (2006).10.1007/s10973-005-7044-6Suche in Google Scholar
16. Khawam, A., Flanagan, D. R.: Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315 (2006).10.1021/jp062746aSuche in Google Scholar PubMed
17. Vyazovkin, S., Dollimore, D.: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Comp. Sci. 36, 42 (1996).10.1021/ci950062mSuche in Google Scholar
18. Farjas, J., Roura, P.: Isoconversional analysis of solid state transformations: a critical review. Part II. Complex transformations. J. Therm. Anal. Calorim. 105, 767 (2011).10.1007/s10973-011-1447-3Suche in Google Scholar
19. Hussein, G. A. M.: Rare earth metal oxides, formation, characterization and catalytic activity thermoanalytical and applied pyrolysis review. J. Anal. Appl. Pyrolysis 37, 111 (1996) and references therein.10.1016/0165-2370(96)00941-2Suche in Google Scholar
20. Spinks, J. W. T., Woods, R. J. (Editors): An Introduction to Radiation Chemistry, 3rd ed., John Wiley & Sons, New York (1990).Suche in Google Scholar
21. Santhosh, G., Soumyamol, P. B., Sreejith, M., Reshmi, S.: Isoconversional approach for the non-isothermal decomposition kinetics of guanylurea dinitramide (GUDN). Thermochim. Acta 632, 46 (2016).10.1016/j.tca.2016.03.019Suche in Google Scholar
22. Mohamed, H. Sh., Dahy, A. A., Mahfouz, R. M.: Isoconversional approach for non-isothermal decomposition of un-irradiated and photon-irradiated 5-fluorouracil. J. Pharm. Biomed. Anal. 145, 509 (2017)10.1016/j.jpba.2017.05.027Suche in Google Scholar PubMed
23. L’vov, B. V.: Thermal decomposition of solids and melts. New thermochemical approach to the mechanism, kinetics and methodology, Springer, Berlin (2007), p. 13.10.1007/978-1-4020-5672-7Suche in Google Scholar
24. Tang, W., Liu, Y., Zhang, H., Wang, C.: New approximate formula for Arrhenius temperature integral. Thermochim. Acta 408, 39 (2003).10.1016/S0040-6031(03)00310-1Suche in Google Scholar
25. Coats, A. W., Redfern, J. P.: Kinetic parameters from thermogravimetric data. Nature 201, 68 (1964).10.1038/201068a0Suche in Google Scholar
26. Gotor, F. J., Criado, J. M., Malek, J., Koga, N.: Kinetic analysis of solid-state reactions: the university of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. 104, 10777 (2000).10.1021/jp0022205Suche in Google Scholar
27. Vyazovkin, S.: A unified approach to kinetic processing of nonisothermal data. Int. Chem. Kinet. 28(2), 95 (1996).10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-GSuche in Google Scholar
28. Pérez-Magueda, L. A., Griado, G. M., Gotor, F. J., Malek, J.: Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J. Phys. Chem. A 106, 2862 (2002).10.1021/jp012246bSuche in Google Scholar
29. Brown, M., Dollimore, D., Galwey, A. K. (Editors): Reaction in the solid state, In: C. H. Bamford, C. F. H. Tipper (Eds.), Comprehensive Chemical Kinetics, 22, Elsevier, Amsterdam (1980).Suche in Google Scholar
30. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107 (1935).10.1063/1.1749604Suche in Google Scholar
31. Cordes, H. M.: Preexponential factors for solid-state thermal decomposition. J. Phys. Chem. 72, 2185 (1968).10.1021/j100852a052Suche in Google Scholar
32. Abu-Eittah, R. H., Zaki, N. G., Mohamed, M. M. A., Kamel. L. T.: Kinetics and thermodynamic parameters of the thermal decomposition of bis(imipraminium)tetrachlorocuprate, bis(imipraminium)tetrachloromercurate and imipraminium reineckate. J. Anal. Appl. Pyrol. 77, 1 (2006).10.1016/j.jaap.2005.06.004Suche in Google Scholar
33. Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993) (also at http:/www.ill.eu/sites/fullprof).10.1016/0921-4526(93)90108-ISuche in Google Scholar
34. Vaḋura, L., Kvapil, J.: Growth and lattice parameters of the lanthanide carboxylates III. Hydrated neodymium acetate. Mater. Res. Bull. 8, 813 (1973).10.1016/0025-5408(73)90188-8Suche in Google Scholar
35. Ferraro, J. R., Becker, M.: I.r. investigation of several rare-earth acetates and formates. J. Inorg. Nucl. Chem. 32(5), 1495 (1970).10.1016/0022-1902(70)80637-6Suche in Google Scholar
36. Nyquis, R. A., Kagel, R. Q.: Infrared Spectra of Inorganic Compounds, Academic Press, New York (1971).10.1016/B978-0-12-523450-4.50005-5Suche in Google Scholar
37. Patil, K. C., Chandrashekhar, G. V., George, M. V., Rao, C. N. R.: Infrared spectra and thermal decomposition of metal acetate and dicarboxylate. Can. J. Chem. 46, 257 (1968).10.1139/v68-040Suche in Google Scholar
38. Al-Resheedi, A. S., Alhokbany, N. S., Mahfouz, R. M.: Radiation induced synthesis of In2O3 nanoparticles-part II: synthesis of In2O3 nanoparticles by thermal decomposition of un-irradiated and γ-irradiated indium acetylacetonate. Mater. Res. 18(5), 931 (2015).10.1590/1516-1439.331814Suche in Google Scholar
39. Dienes, G. J., Vineyard, G. H.: Radiation Effects in Solid, Interscience Publishers, New York (1957).Suche in Google Scholar
40. Gulas, S., Samuel, J.: γ-Irradiation effects on the nonisothermal decomposition of Strontium nitrate by model-free and model-fitting methods. Radiat. Phys. Chem. 86, 90 (2013).10.1016/j.radphyschem.2013.01.042Suche in Google Scholar
Supplementary Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2017-2892).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Measurement of cross sections and isomeric cross-section ratios for the (n,2n) reactions on 85,87Rb in energies between 13 and 15 MeV
- Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes
- Diatomite modified by TiO2 for adsorption of U(VI)
- Production and separation of no-carrier-added 181−184Re radioisotopes from proton irradiated tungsten target
- Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptor-myocardial perfusion imaging
- Determination of the Sr/Ca ratio of tooth samples by photoactivation analysis in Southern Turkey
- Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L.
- Thermal decomposition of un-irradiated and γ-ray irradiated holmium acetate tetrahydrate. Part 1: kinetics of nonisothermal dehydration of un-irradiated and γ-ray irradiated Ho(CH3COO)3⋅4H2O
- Study of radiotoxic 210Po in Indian tobacco using liquid scintillation spectrometry
- Preliminary investigations on reducing the high radiation risk level of TENORM scale waste from petroleum industry
Artikel in diesem Heft
- Frontmatter
- Measurement of cross sections and isomeric cross-section ratios for the (n,2n) reactions on 85,87Rb in energies between 13 and 15 MeV
- Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes
- Diatomite modified by TiO2 for adsorption of U(VI)
- Production and separation of no-carrier-added 181−184Re radioisotopes from proton irradiated tungsten target
- Radioiodinated celiprolol as a new highly selective radiotracer for β1-adrenoceptor-myocardial perfusion imaging
- Determination of the Sr/Ca ratio of tooth samples by photoactivation analysis in Southern Turkey
- Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L.
- Thermal decomposition of un-irradiated and γ-ray irradiated holmium acetate tetrahydrate. Part 1: kinetics of nonisothermal dehydration of un-irradiated and γ-ray irradiated Ho(CH3COO)3⋅4H2O
- Study of radiotoxic 210Po in Indian tobacco using liquid scintillation spectrometry
- Preliminary investigations on reducing the high radiation risk level of TENORM scale waste from petroleum industry