Abstract
A reference source with the granular active portion was made using 152,154Eu(III) loaded tin tungstate material. Batch equilibration method was used to investigate the interaction of 152,154Eu(III) radiotracer (10−4 M) in acid solutions on tin(IV) tungstate gel matrix. The sorption behavior of 152,154Eu(III) showed high affinity towards tin(IV) tungstate gel matrix at low pH values. Tin tungstate gel matrix was loaded with 152,154Eu from batch at pH 3. Standardization of the source was done spectroscopically with reference to primary certified set of radioactive sources and with the aid of HPGe detector. Random and true coincidence summing was carried out by following-up coincidence in 152Eu and possible interference between γ lines of 152Eu and 154Eu. The relation between the grain size and the activity of samples was studied. Correction factor for capsule attenuation was applied.
References
1. Said, S. A., Elmaghraby, E. K., Mohamed, G. Y., Essa, H. S.: Passive measurements and activation analysis of granite samples. J. Nucl. Radiat. Phys. 11, 53 (2016).Suche in Google Scholar
2. Elmaghraby, E. K.: Internal efficiency calibration for bulk samples using a peak-by-peak cascade technique. Int. J. Nucl. Energy. Sci. Technol. 10(3), 234 (2016).10.1504/IJNEST.2016.078959Suche in Google Scholar
3. Kenawy, S. H., Elmaghraby, E. K.: Experimental determination of effective density of Al2O3–SiC–ZrO2 ceramics porous phase using gamma-ray attenuation. Int. J. Nucl. Energy Sci. Technol. 11(2), 163 (2017).10.1504/IJNEST.2017.085774Suche in Google Scholar
4. Reher, D. F. G., Denecke, B., De Roost, E., van der Meer, K.: Standardization of a 50 GBq 152,154Eu extended volume source. Nucl. Instrum. Methods A 339, 334 (1994).10.1016/0168-9002(94)91827-9Suche in Google Scholar
5. International Organization for Standardization: ISO 2919:2012, radiation protection – sealed radioactive sources – general requirements and classification (2012).Suche in Google Scholar
6. Elmaghraby, E. K.: Investigation of epi-thermal shape parameter needed for precision analysis of activation. Eur. Phys. J. Plus 132, 249 (2017).10.1140/epjp/i2017-11516-7Suche in Google Scholar
7. Yoshizawa, Y., Iwata, Y., Iinuma, Y.: Precision measurements of gamma-rays intensities 152Eu, 154Eu and 192Ir. Nucl. Instrum. Methods 174, 133 (1980).10.1016/0029-554X(80)90421-8Suche in Google Scholar
8. Helmer, R. G.: Selected gamma-ray energies and emission probabilities for the decays of 125Sb and 154Eu. Appl. Radiat. Isot. 41, 75 (1990).10.1016/0883-2889(90)90133-2Suche in Google Scholar
9. Terechtchenko, E., Rasko, M., Sepman, S., Zanevsky, A., Tran Tuan, A., Amiot, M. N., Bobin, C., Morel, J.: Study of XK and g-photon emission following decay of 154Eu. Appl. Radiat. Isot. 60, 329 (2004).10.1016/j.apradiso.2003.11.036Suche in Google Scholar PubMed
10. Be, M.-M., Lame, J., Piton, F., Lagoutine, F., Coursol, N., Legrand, J., Duchemin, B., Morillon, C., Browne, E., Chechev, V., Egorov, A., Helmer, R., Schonfeld, E.: Nuclear and atomic decay data, Monographie BIPM-5, BNM/CEA/LPRI, Saclay, France (1998).Suche in Google Scholar
11. Vimalnath, K. V., Das, M. K., Ananthakrishnan, M., Ramamoorthy, N.: Facile access to 154Eu, a new reference source for calibration in gamma ray spectrometry. Appl. Radiat. Isot. 62, 17 (2005).10.1016/j.apradiso.2004.04.019Suche in Google Scholar PubMed
12. Johansson, L., Altzitzoglou, T., Sibbens, G., Denecke, B., Reher, D. F. G.: Six direct methods for standardization of 152Eu. Nucl. Instrum. Methods A 508, 378 (2003).10.1016/S0168-9002(03)01510-9Suche in Google Scholar
13. Danilenko, V. N., Gromova, N. P., Konstantinov, A. A., Kurenkov, N. V., Malinin, A. B., Matveev, S. V., Sazonova, T. E., Stepanov, E. K., Sepman, S. V., Tronova, I. N.: Methods of producing radionuclides for spectrometric gamma-ray sources and their standardization—2 – Europium-152. Appl. Radiat. Isot. 40(8), 711 (1989).10.1016/0883-2889(89)90083-XSuche in Google Scholar
14. Firestone, R. B., Baglin, C. M., Chu, S. Y. F.: Table of Isotopes: 1998 Update, Wiley, New York (1998).Suche in Google Scholar
15. Schneider, C. A., Rasband, W. S., Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).10.1038/nmeth.2089Suche in Google Scholar PubMed
16. Hubbell, J. H.: Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV. Int. J. Appl. Radiat. Isot. 33, 1269 (1982).10.1016/0020-708X(82)90248-4Suche in Google Scholar
17. Berger, M. J., Hubbell, J. H., Seltzer, S. M., Chang, J., Coursey, J. S., Sukumar, R., Zucker, D. S., Olsen, K.: XCOM: Photon Cross Section Database (version 1.5). [Online] Available on National Institute of Standards and Technology, Gaithersburg, MD, url: http://physics.nist.gov/xcom [Friday, 05-May-2017].10.6028/NBS.IR.87-3597Suche in Google Scholar
18. Millsap, D. W., Landsberger, S.: Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl. Radiat. Isot. 97, 21 (2015).10.1016/j.apradiso.2014.12.008Suche in Google Scholar PubMed
19. Dewji, S. A., Croft, S., Hertel, N. E.: Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities. Nucl. Instrum. Methods Phys. Res. A 848, 153 (2017).10.1016/j.nima.2016.12.018Suche in Google Scholar
20. Collins, S. M., Pearce, A. K., Regan, P. H., Keightley, J. D.: Precise measurements of the absolute γ-ray emission probabilities of 223Ra and decay progeny in equilibrium. Appl. Radiat. Isot. 102, 15 (2015).10.1016/j.apradiso.2015.04.008Suche in Google Scholar PubMed
21. Parker, J. L.: Use of calibration standards and the correction for sample self-attenuation in gamma-ray nondestructive assay. Technical Report No. LA-10045. Los Alamos National Lab., USA (1984).10.2172/6395266Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Development of a “fission-proxy” method for the measurement of 14-MeV neutron fission yields
- Investigations on the complete removal of iron(III) interference on the uranium(VI) extraction from sulfate leach liquor using Alamine 336 in kerosene
- Homogeneous hydrolysis of thorium by thermal decomposition of urea
- Solubilities and solubility products of thorium hydroxide under moderate temperature conditions
- Determination of uranium and thorium concentrations in thorium ore sample using artificial neural network and comparison with net area peak method
- Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP
- Development of granular radioactive reference source from 152,154Eu adsorbed on tin tungstate matrix
- Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect
- EPR measurement of environmental radiation using human fingernails
Artikel in diesem Heft
- Frontmatter
- Development of a “fission-proxy” method for the measurement of 14-MeV neutron fission yields
- Investigations on the complete removal of iron(III) interference on the uranium(VI) extraction from sulfate leach liquor using Alamine 336 in kerosene
- Homogeneous hydrolysis of thorium by thermal decomposition of urea
- Solubilities and solubility products of thorium hydroxide under moderate temperature conditions
- Determination of uranium and thorium concentrations in thorium ore sample using artificial neural network and comparison with net area peak method
- Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP
- Development of granular radioactive reference source from 152,154Eu adsorbed on tin tungstate matrix
- Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect
- EPR measurement of environmental radiation using human fingernails