Home Physical Sciences Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect
Article
Licensed
Unlicensed Requires Authentication

Dosimetric characterization of novel polycarbonate/porphyrin film dosimeters for high dose dosimetry: study on complexation effect

  • Eftekhar Sadat Noorin , Shahzad Feizi EMAIL logo and Shahram Moradi Dehaghi
Published/Copyright: March 29, 2018

Abstract

Two novel radiochromic films with 20 μm thickness were made from casting of solutions of polycarbonate (PC) containing 0.5 wt.% tetra phenyl porphyrin (TPPH2) and 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride (Fe-TPP). Dosimetric characterization of the films as routine dosimeters were studied by spectrophotometric method. On subjecting TPPH2/PC and Fe-TPP/PC film dosimeters to gamma radiation, radiolytic bleaching of films was observed. The effects of metal-complexation on the radiation response of the film dosimeters were studied under 60Co γ-rays exposure in dose range of 0–100 kGy. The results were also compared with the PC/TPPF20 (PC/tetrakis (pentafluorophenyl) porphyrin) dosimeter to evaluate the substituent effect (role of fluorine groups). Experimental parameters including humidity, temperature and pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight were examined. The maximum absorbance of Soret band of dyes had meaningful shifts and reduction which arose from complexation and substituents. The dyed films characteristics were found to be stable enough in media with high degrees of temperature and humidity. The results indicate that the radiation-induced decoloration of TPPH2/PC and Fe-TPP/PC films can be reliably tuned and used in high dose dosimetry.

References

1. ISO/ASTM 51261: American Society for Testing and Materials, West Conshohocken, PA, USA (2002).Search in Google Scholar

2. IAEA: Dosimetry for Food Irradiation, Technical Reports Series Number 409, Austria, Vienna (2002).Search in Google Scholar

3. Bhatti, I. A., Adeel, S., Taj, H.: Application of Vat Green 1 dye on gamma ray treated cellulosic fabric. Radiat. Phys. Chem. 102, 124 (2014).10.1016/j.radphyschem.2014.04.015Search in Google Scholar

4. Feizi, S., Ziaie, F., Ghandi, M.: Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing. Radiochim. Acta 103, 149 (2015).10.1515/ract-2014-2265Search in Google Scholar

5. Feizi, S., Ziaie, F., Ghandi, M.: Using polycarbonate dyed with dansyl chloride for dosimetry in radiation processing. Radiochim. Acta 103, 605 (2015).10.1515/ract-2015-0001Search in Google Scholar

6. ISO/ASTM 51275: American Society for Testing and Materials, West Conshohocken, PA, USA (2002).Search in Google Scholar

7. Frame, P. W.: A history of radiation detection instrumentation. Health Phys. 87, 111 (2004).10.1097/00004032-200408000-00001Search in Google Scholar PubMed

8. Mai, H. H., Solomon, H. M., Taguchi, M., Kojima, T.: Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters. Radiat. Phys. Chem. 77, 457 (2008).10.1016/j.radphyschem.2007.06.012Search in Google Scholar

9. ISO/ASTM 51650: American Society for Testing and Materials, West Conshohocken, PA, USA (2002).Search in Google Scholar

10. Kattan, M., al Kassiri, H., Daher, Y.: Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry. Appl. Radiat. Isot. 69, 377 (2011).10.1016/j.apradiso.2010.11.006Search in Google Scholar PubMed

11. Kattan, M., Daher, Y.: The use of polyvinyl chloride films dyed with methyl red in radiation dosimetry. Int. J. Radiat. Res. 14, 4 (2016).10.18869/acadpub.ijrr.14.3.263Search in Google Scholar

12. McLaughlin, W. L.: “Novel radiation dosimetry systems,” invited paper in High Dose Dosimetry for Radiation Processing. Proceedings of International Symposium STI/PUB/846, International Atomic Energy Agency, Vienna (1991).Search in Google Scholar

13. Niroomand-Rad, A., Blackwell, C. R., Coursey, B. M., Gall, K. P., Galvin, J. M., McLaughlin, W. L., Meigooni, A. S., Nath, R., Rodgers, J. E., Soares, C. G.: Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093 (1998).10.1118/1.598407Search in Google Scholar PubMed

14. Williams, M., Metcalfe, P.: Radiochromic film dosimetry and its applications in radiotherapy. AIP Conf. Proc. 1345, 75 (2011).10.1063/1.3576160Search in Google Scholar

15. Lewis, D., Devic, S.: Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system. Med. Phys. 42, 5692 (2015).10.1118/1.4929563Search in Google Scholar PubMed

16. Chang, L., Ho, S.-Y., Lee, T.-F., Yeh, S.-A., Ding, H.-J., Chen, P.-Y.: Calibration of EBT2 film using a red-channel PDD method in combination with a modified three-channel technique. Med. Phys. 42, 5838 (2015).10.1118/1.4930253Search in Google Scholar PubMed

17. Poppinga, D., Schoenfeld, A. A., Doerner, K. J., Blanck, O., Harder, D., Poppe, B.: A new correction method serving to eliminate the parabola effect of flatbed scanners used in radiochromic film dosimetry. Med. Phys. 41, 021707 (2014).10.1118/1.4861098Search in Google Scholar PubMed

18. Devic, S., Tomic, N., Lewis, D.: Reference radiochromic film dosimetry: review of technical aspects. Phys. Med. 32, 541 (2016).10.1016/j.ejmp.2016.02.008Search in Google Scholar PubMed

19. Tamponi, M., Bona, R., Poggiu, A., Marini, P.: A new form of the calibration curve in radiochromic dosimetry. Properties and results. Med. Phys. 43, 4435 (2016).10.1118/1.4954208Search in Google Scholar

20. Skyt, P. S., Jensen, G. V., Wahlstedt, I., Baltzer Petersen, J. B., Muren, L. P., Pedersen, J. S., Balling, P.: Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter. RSC Adv. 4, 9152 (2014).10.1039/c3ra46605aSearch in Google Scholar

21. Al Zahrany, A. A., Rabaeh, K. A., Basfar, A. A.: Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter. Radiat. Phys. Chem. 80, 1263 (2011).10.1016/j.radphyschem.2011.06.001Search in Google Scholar

22. Zhang, Z., Tang, X., Liu, Y., Xu, Z., Liu, K., Yuan, Z., Chen, W.: A study on the degradation of dye-sensitized solar cells irradiated by two different dose rates of γ-rays. J. Radioanal. Nucl. Chem. 312, 609 (2017).10.1007/s10967-017-5262-6Search in Google Scholar

23. Butson, M. J., Cheung, T., Yu, P. K.: Visible absorption properties of radiation exposed XR type-T radiochromic film. Phys. Med. Biol. 49, N347 (2004).10.1088/0031-9155/49/19/N04Search in Google Scholar PubMed

24. Imahori, H., Kashiwagi, Y., Endo, Y., Hanada, T., Nishimura, Y., Yamazaki, I., Araki, Y., Ito, O., Fukuzumi, S.: Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths. Langmuir 20, 73 (2004).10.1021/la035435pSearch in Google Scholar PubMed

25. Delmarre, D., Bied-Charreton, C.: Grafting of cobalt porphyrins in sol–gel matrices: application to the detection of amines. Sens. Actuators B Chem. 62, 136 (2000).10.1016/S0925-4005(99)00383-4Search in Google Scholar

26. Fazaeli, Y., Feizi, S., Jalilian, A. R., Hejrani, A.: Grafting of [64Cu]-TPPF20 porphyrin complex on functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isot. 112, 13 (2016).10.1016/j.apradiso.2016.03.003Search in Google Scholar PubMed

27. Vahidfar, N., Fazaeli, Y., Jalilian, A.: Radiosynthesis and biological evaluation of 166Ho labeled methoxylated porphyrins as possible therapeutic agents. J. Radioanal. Nucl. Chem. 301, 269 (2014).10.1007/s10967-014-3113-2Search in Google Scholar

28. Fazaeli, Y., Jalilian, A. R., Feizi, S., Shadanpour, N.: Development of a radiothallium (III) labeld porphyrin complex as a potential imaging agent. Radiochim. Acta 101, 795 (2013).10.1524/ract.2013.2092Search in Google Scholar

29. Tonezzer, M., Maggioni, G., Quaranta, A., Carturan, S., Mea, G. D.: Growth, characterization and sensing capabilities of 5,10,15,20-meso-tetraphenyl iron (III) porphyrin chloride films obtained by means of a novel plasma-based deposition technique. Sens. Actuators B Chem. 136, 290 (2009).10.1016/j.snb.2008.12.058Search in Google Scholar

30. Fateeva, A., Clarisse, J., Pilet, G., Grenèche, J.-M., Nouar, F., Abeykoon, B. K., Guegan, F., Goutaudier, C., Luneau, D., Warren, J. E., Rosseinsky, M. J., Devic, T.: Iron and porphyrin metal–organic frameworks: insight into structural diversity, stability, and porosity. Cryst. Growth Des. 15, 1819 (2015).10.1021/cg501855kSearch in Google Scholar

31. Feizi, S.: Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry. Radiochim. Acta 105, 657 (2017).10.1515/ract-2016-2754Search in Google Scholar

32. Abdel-Fattah, A., Said, F., Ebraheem, S., El-Kelany, M., El Miligy, A.: Dyed acrylic-acid grafted polypropylene films for high-dose radiation dosimetry. Radiat. Phys. Chem. 54, 271 (1999).10.1016/S0969-806X(98)00259-XSearch in Google Scholar

33. Khan, H. M., Farahani, M., William, L. M.: A radiochromic folm dosimeter for gamma radiation in the absorbed-dose range 0.1–10 kGy. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 38, 395 (1991).10.1016/1359-0197(91)90114-HSearch in Google Scholar

34. McLaughlin, W. L., Puhl, J. M., Miller, A.: Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma and electron radiation. Radiat. Phys. Chem. 46, 1227 (1995).10.1016/0969-806X(95)00359-6Search in Google Scholar

35. Ziaie, F., Tahami, S., Zareshahi, H., Lanjanian, H., Durrani, S.: Influence of environmental factors on some high dose dosimeter responses in Yazd Radiation Processing Center. Radiat. Meas. 43, S643 (2008).10.1016/j.radmeas.2008.04.032Search in Google Scholar

36. Patel, N. J., Chen, Y., Joshi, P., Pera, P., Baumann, H., Missert, J. R., Ohkubo, K., Fukuzumi, S., Nani, R. R., Schnermann, M. J., Chen, P., Zhu, J., Kadish, K. M., Pandey, R. K.: Effect of metalation on porphyrin-based bifunctional agents in tumor imaging and photodynamic therapy. Bioconjug. Chem. 27, 667 (2016).10.1021/acs.bioconjchem.5b00656Search in Google Scholar PubMed PubMed Central

37. Jadhav, S., Yim, C.-B., Rajander, J., Grönroos, T. J., Solin, O., Virta, P.: Solid-supported porphyrins useful for the synthesis of conjugates with oligomeric biomolecules. Bioconj. Chem. 27, 1023 (2016).10.1021/acs.bioconjchem.6b00051Search in Google Scholar

38. Walker, F. A., Simonis, U.: Encyclopedia of Inorganic Chemistry, John Wiley and Sons, Ltd., Hoboken, New Jersey, USA (2006).Search in Google Scholar

39. ASTM E1026-95: American Society for Testing and Materials, West Conshohocken, PA, USA (2003).Search in Google Scholar

40. Faria de Sales, N., Mansur, H. S.: Influence of subphase parameters on the nanostructures of 5,10,15,20-tetraphenyl-21H,23H-porphine films at air-water interface. J. Nanosci. Nanotechnol. 9, 688 (2009).10.1166/jnn.2009.C004Search in Google Scholar PubMed

41. Tjandraatmadja, G., Burn, L., Jollands, M.: Evaluation of commercial polycarbonate optical properties after QUV-A radiation–the role of humidity in photodegradation. Polym. Degrad. Stab. 78, 435 (2002).10.1016/S0141-3910(02)00179-9Search in Google Scholar

42. ASTM E1707: American Society for Testing and Materials, West Conshohocken, PA, USA (1995).Search in Google Scholar

Received: 2017-06-18
Accepted: 2018-01-22
Published Online: 2018-03-29
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2839/html
Scroll to top button