Home Adsorption behavior of U(VI) on doped polyaniline: the effects of carbonate and its complexes
Article
Licensed
Unlicensed Requires Authentication

Adsorption behavior of U(VI) on doped polyaniline: the effects of carbonate and its complexes

  • Jun Liu , Changsong Zhao , Guoyuan Yuan , Feize Li , Jijun Yang EMAIL logo , Jiali Liao , Yuanyou Yang and Ning Liu EMAIL logo
Published/Copyright: February 5, 2018

Abstract

In carbonate-buffer seawater or salt lake brines, three main uranium complexes, U(VI)-CO3 and Ca/Mg-U(VI)-CO3 complexes had been highlighted so far. In this paper, the effects of carbonate and its complexes on U(VI) adsorption onto doped polyaniline (PANI) were investigated using batch adsorption experiments. The adsorption equilibrium of U(VI) on doped PANI was reached within 30 min of contact time when U(VI)-CO3 complexes dominated the aqueous chemistry. Pseudo-second order and Langmuir isotherm models indicated that adsorption occurred on the homogeneous surface via monolayer chemisorption. Moreover, the increase in pHinitial, dissolved carbonate, calcium and magnesium concentrations could suppress the uranium adsorption process. The adsorption mechanisms under the weakly basic conditions were primarily involved in uranium anion species adsorption on nitrogen-containing functional groups instead of the anion exchange reactive sites on the doped PANI surface sites, whereas the U(VI)-CO3 complexes had a greater affinity than the Ca/Mg-U(VI)-CO3 complexes. The findings of this study are significant for the extraction of uranium resources from salt lake brines or seawater and for the prediction of uranium adsorption behaviors in weakly basic solution environments.

Acknowledgments

This work was supported by the Joint Funds of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF, Grant no. U1330125) and the National Fund of China for Fostering Talents in Basic Science (J1210004).

References

1. Kim, J., Tsouris, C., Mayes, R. T., Oyola, Y., Saito, T., Janke, C. J., Dai, S., Schneider, E., Sachde, D.: Recovery of uranium from seawater: a review of current status and future research needs. Separ. Sci. Technol. 48, 367 (2013).10.1080/01496395.2012.712599Search in Google Scholar

2. An, S., Wu, Z.: Feasibility of uranium extraction from oilfield waters and salt lake brines in qaidam basin. J. Salt Lake Res. 15, 55 (2007).Search in Google Scholar

3. Kim, Y. S., Zeitlin, H.: Separation of uranium from seawater by adsorbing colloid flotation. Anal. Chem. 43, 1390 (1971).10.1021/ac60305a014Search in Google Scholar PubMed

4. Schenk, H. J., Astheimer, L., Witte, E. G., Schwochau, K.: Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Sep. Sci. Technol. 17, 1293 (1982).10.1080/01496398208056103Search in Google Scholar

5. Egawa, H., Kabay, N., Shuto, T., Jyo, A.: Recovery of uranium from seawater. XII. Preparation and characterization of lightly crosslinked highly porous chelating resins containing amidoxime groups. J. Appl. Polym. Sci. 46, 129 (1992).10.1002/app.1992.070460113Search in Google Scholar

6. Zhang, A. Y., Uchiyama, G., Asakura, T.: pH Effect on the uranium adsorption from seawater by a macroporous fibrous polymeric material containing amidoxime chelating functional group. React. Funct. Polym. 63, 143 (2005).10.1016/j.reactfunctpolym.2005.02.015Search in Google Scholar

7. Milja, T. E., Prathish, K. P., Rao, T. P.: Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water. J. Hazard. Mater. 188, 384 (2011).10.1016/j.jhazmat.2011.01.121Search in Google Scholar PubMed

8. Yue, Y., Sun, X., Mayes, R. T., Kim, J., Fulvio, P. F., Qiao, Z., Brown, S., Tsouris, C., Oyola, Y., Dai, S.: Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Sci. China Chem. 56, 1510 (2013).10.1007/s11426-013-4995-5Search in Google Scholar

9. Chen, L., Bai, Z., Zhu, L., Zhang, L., Cai, Y., Li, Y., Liu, W., Wang, Y., Chen, L., Juan, D., Wang, J., Chai, Z., Wang, S.: Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. Acs Appl. Mater. Inter. 9, 32446 (2017).10.1021/acsami.7b12396Search in Google Scholar PubMed

10. Sun, Y., Yang, S., Sheng, G., Guo, Z., Wang, X.: The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Environ. Radioact. 105, 40 (2012).10.1016/j.jenvrad.2011.10.009Search in Google Scholar PubMed

11. Cai, Y., Wu, C., Liu, Z., Zhang, L., Chen, L., Wang, J., Wang, X., Yang, S., Wang, S.: Fabrication of a phosphorylated graphene oxide-chitosan composite for highly effective and selective capture of U(VI). Environ. Sci. Nano 4, 1876 (2017).10.1039/C7EN00412ESearch in Google Scholar

12. Ying-kai, X., Wei-guo, L., Yin-min, Z., Yun-hui, W., Shirodkar, P. V.: Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin. Chin. J. Oceanol. Limnol. 18, 169 (2000).10.1007/BF02842577Search in Google Scholar

13. Bernhard, G., Geipel, G., Brendler, V., Nitsche, H.: Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 74, 87 (1996).10.1524/ract.1996.74.special-issue.87Search in Google Scholar

14. Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., Nitsche, H.: Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq) species. Radiochim. Acta 89, 511 (2001).10.1524/ract.2001.89.8.511Search in Google Scholar

15. Dong, W., Brooks, S. C.: Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ. Sci. Technol. 40, 4689 (2006).10.1021/es0606327Search in Google Scholar PubMed

16. Kerisit, S., Liu, C.: Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution. Geochim. Cosmochim. Acta. 74, 4937 (2010).10.1016/j.gca.2010.06.007Search in Google Scholar

17. Lee, J.-Y., Vespa, M., Gaona, X., Dardenne, K., Rothe, J., Rabung, T., Altmaier, M., Yun, J.-I.: Formation, stability and structural characterization of ternary MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) complexes. Radiochim. Acta 105, 171 (2017).10.1515/ract-2016-2643Search in Google Scholar

18. Endrizzi, F., Rao, L.: Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4− and the effect on the extraction of uranium from seawater. Chem-Eur. J. 20, 14499 (2014).10.1002/chem.201403262Search in Google Scholar PubMed

19. Acharya, C., Joseph, D., Apte, S. K.: Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042. Bioresource Technol. 100, 2176 (2009).10.1016/j.biortech.2008.10.047Search in Google Scholar PubMed

20. Wazne, M., Korfiatis, G. P., Meng, X.: Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol. 37, 3619 (2003).10.1021/es034166mSearch in Google Scholar PubMed

21. Zhang, Z., Liu, J., Cao, X., Luo, X., Hua, R., Liu, Y., Yu, X., He, L., Liu, Y.: Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes. J. Hazard. Mater. 300, 633 (2015).10.1016/j.jhazmat.2015.07.058Search in Google Scholar PubMed

22. Liu, J., Zhao, C., Tu, H., Yang, J., Li, F., Li, D., Liao, J., Yang, Y., Tang, J., Liu, N.: U(VI) adsorption onto cetyltrimethylammonium bromide modified bentonite in the presence of U(VI)-CO3 complexes. Appl. Clay Sci. 135, 64 (2017).10.1016/j.clay.2016.09.005Search in Google Scholar

23. Ladshaw, A. P., Das, S., Liao, W. P., Yiacoumi, S., Janke, C. J., Mayes, R. T., Dai, S., Tsouris, C.: Experiments and modeling of uranium uptake by amidoxime-based adsorbent in the presence of other ions in simulated seawater. Ind. Eng. Chem. Res. 55, 4241 (2016).10.1021/acs.iecr.5b03456Search in Google Scholar

24. Yamashita, H., Ozawa, Y., Nakajima, F., Murata, T.: The collection of uranium from sea water with hydrous metal oxide. II. The mechanism of uranium adsorption on hydrous titanium(IV) oxide. B. Chem. Soc. Jpn. 53, 1 (1980).10.1246/bcsj.53.1Search in Google Scholar

25. Hirotsu, T., Katoh, S., Sugasaka, K., Senō, M., Itagaki, T.: Adsorption equilibrium of uranium from aqueous [UO2(CO3)3]4− solutions on a polymer bearing amidoxime groups. J. Chem. Soc. Dalton Trans. 1983 (1986). DOI: 10.1039/DT9860001983.10.1039/DT9860001983Search in Google Scholar

26. Mahanta, D., Madras, G., Radhakrishnan, S., Patil, S.: Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics. J. Phys. Chem. B 112, 10153 (2008).10.1021/jp803903xSearch in Google Scholar PubMed

27. Zhang, R., Ma, H., Wang, B.: Removal of chromium(VI) from aqueous solutions using polyaniline doped with sulfuric acid. Ind. Eng. Chem. Res. 49, 9998 (2010).10.1021/ie1008794Search in Google Scholar

28. Ai, L., Jiang, J., Zhang, R.: Uniform polyaniline microspheres: a novel adsorbent for dye removal from aqueous solution. Synth. Met. 160, 762 (2010).10.1016/j.synthmet.2010.01.017Search in Google Scholar

29. Liu, J., Zhao, C., Zhang, Z., Liao, J., Liu, Y., Cao, X., Yang, J., Yang, Y., Liu, N.: Fluorine effects on U(VI) sorption by hydroxyapatite. Chem. Eng. J. 288, 505 (2016).10.1016/j.cej.2015.12.045Search in Google Scholar

30. Wang, G., Liu, J., Wang, X., Xie, Z., Deng, N.: Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J. Hazard. Mater. 168, 1053 (2009).10.1016/j.jhazmat.2009.02.157Search in Google Scholar PubMed

31. Eren, Z., Acar, F. N.: Adsorption of reactive black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination 194, 1 (2006).10.1016/j.desal.2005.10.022Search in Google Scholar

32. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Juan, D., Wang, J., Zhou, R., Chai, Z., Wang, S.: Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51, 3911 (2017).10.1021/acs.est.6b06305Search in Google Scholar

33. Bhatnagar, A., Jain, A. K.: A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 281, 49 (2005).10.1016/j.jcis.2004.08.076Search in Google Scholar

34. Zhang, X., Bai, R.: Surface electric properties of polypyrrole in aqueous solutions. Langmuir 19, 10703 (2003).10.1021/la034893vSearch in Google Scholar

35. Vangeen, A., Robertson, A. P., Leckie, J. O.: Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters. Geochim. Cosmochim. Acta. 58, 2073 (1994).10.1016/0016-7037(94)90286-0Search in Google Scholar

36. Fox, P. M., Davis, J. A., Zachara, J. M.: The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochimica Et Cosmochimica Acta 70, 1379 (2006).10.1016/j.gca.2005.11.027Search in Google Scholar

37. Endrizzi, F., Leggett, C. J., Rao, L.: Scientific basis for efficient extraction of uranium from seawater. I: understanding the chemical speciation of uranium under seawater conditions. Ind. Eng. Chem. Res. 55, 4249 (2016).10.1021/acs.iecr.5b03679Search in Google Scholar

38. Dong, W., Brooks, S. C.: Formation of aqueous MgUO2(CO3)32− complex and uranium anion exchange mechanism onto an exchange resin. Environ. Sci. Technol. 42, 1979 (2008).10.1021/es0711563Search in Google Scholar

39. Gök, A., Omastová, M., Prokeš, J.: Synthesis and characterization of red mud/polyaniline composites: electrical properties and thermal stability. Eur. Polym. J. 43, 2471 (2007).10.1016/j.eurpolymj.2007.03.005Search in Google Scholar

40. Allen, P. G., Bucher, J. J., Clark, D. L., Edelstein, N. M., Ekberg, S. A., Gohdes, J. W., Hudson, E. A., Kaltsoyannis, N., Lukens, W. W.: Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of [C(NH2)3]6[(UO2)3(CO3)6]·6.5H2O. Inorg. Chem. 34, 4797 (1995).10.1021/ic00123a013Search in Google Scholar

41. Majumdar, D., Roszak, S., Balasubramanian, K., Nitsche, H.: Theoretical study of aqueous uranyl carbonate (UO2CO3) and its hydrated complexes: UO2CO3·nH2O (n=1–3). Chem. Phys. Lett. 372, 232 (2002).10.1016/S0009-2614(03)00404-4Search in Google Scholar

42. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Juan, D., Su, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 137, 6144 (2015).10.1021/jacs.5b02480Search in Google Scholar

43. Li, J., Tang, X., Li, H., Yan, Y., Zhang, Q.: Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth. Met. 160, 1153 (2010).10.1016/j.synthmet.2010.03.001Search in Google Scholar

44. Abdiryim, T., Zhang, X. G., Jamal, R.: Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 90, 367 (2005).10.1016/j.matchemphys.2004.10.036Search in Google Scholar

45. Zhang, Z., Wei, Z., Wan, M.: Nanostructures of polyaniline doped with inorganic acids. Macromolecules 35, 5937 (2002).10.1021/ma020199vSearch in Google Scholar

46. Deng, F., Min, L., Luo, X., Wu, S., Luo, S.: Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole. Nanoscale 5, 8703 (2013).10.1039/c3nr02502kSearch in Google Scholar

47. Wang, J., Zhang, K., Zhao, L.: Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): effect of protonic acids. Chem. Eng. J. 239, 123 (2014).10.1016/j.cej.2013.11.006Search in Google Scholar

48. Zhao, C., Liu, J., Tu, H., Li, F., Li, X., Yang, J., Liao, J., Yang, Y., Liu, N., Sun, Q.: Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ. Sci. Pollut. R 23, 24846 (2016).10.1007/s11356-016-7722-xSearch in Google Scholar

49. Zheng, T., Yang, Z., Gui, D., Liu, Z., Wang, X., Dai, X., Liu, S., Zhang, L., Gao, Y., Chen, L., Sheng, D., Wang, Y., Juan, D., Wang, J., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Commun. 8, 15369 (2017).10.1038/ncomms15369Search in Google Scholar

50. Sreedhar, B., Sairam, M., Chattopadhyay, D. K., Mitra, P. P., Rao, D. V. M.: Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization. J. Appl. Polym. Sci. 101, 499 (2006).10.1002/app.23301Search in Google Scholar

51. Kang, E. T., Neoh, K. G., Tan, K. L.: Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 23, 277 (1998).10.1016/S0079-6700(97)00030-0Search in Google Scholar

52. Wang, J., Deng, B., Chen, H., Wang, X., Zheng, J.: Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms. Environ. Sci. Technol. 43, 5223 (2009).10.1021/es803710kSearch in Google Scholar PubMed

Received: 2017-8-14
Accepted: 2017-12-11
Published Online: 2018-2-5
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2865/html
Scroll to top button