Home Physical Sciences Comparison of univariate and multivariate data analysis models for uranium quantification in Trombay historical nuclear waste glass
Article
Licensed
Unlicensed Requires Authentication

Comparison of univariate and multivariate data analysis models for uranium quantification in Trombay historical nuclear waste glass

  • Manjeet Singh , Raman Kumar Mishra , Amar Kumar , Chetan Parkash Kaushik , P.G. Jaison and Arnab Sarkar EMAIL logo
Published/Copyright: January 29, 2018

Abstract

Laser induced breakdown spectroscopy recently has been investigated for analysis of nuclear waste glass for uranium quantification. The initial obtained accuracy and precision was ~15%. In this paper, we have compared the analytical merit of the univariative and multivariative PLSR regression models for the determination of U in barium borosilicate simulated waste glass containing significant amount of U. The analytical merit of a Czerny-Turner spectrograph with high spectral resolution and Echelle spectrograph with broadband spectrum recording capacity were compared using spectra simultaneously record from the same plasma. For univariative calibration the superiority of Czerny-Turner spectrograph over the Echelle has been demonstrated here. Multivariative chemometric PLSR model was found to drastically improve the results. It was also observed that selection of spectral window for analysis significantly affects the analytical merit of multivariative analysis. Echelle though shows relatively inferior analytical merit, but by applying Analytical spectral dependant PLSR in Echelle spectra, a much higher degree of improvement was observed. Using ASD-PLSR and Czerny-Turner spectrograph generated spectra an accuracy and precision of 2–2.5% was achieved in this study.

Acknowledgment

The authors are thankful to Dr. S. Kannan, Head, Fuel Chemistry Division B.A.R.C. for his constant support and encouragement in LIBS work.

References

1. Design and Operation of High Level Waste Vitrification and Storage Facilities (1992), International Atomic Energy Agency, Vienna.Search in Google Scholar

2. Kaushik, C. P., Raj, K.: IOP Conf. Ser.: Mater. Sci. Eng. 2, 1 (2002).Search in Google Scholar

3. Gary Eller, P., Jarvinen, G. D., Purson, J. D., Penneman, R. A., Ryan, R. R., Lytle, F. W., Greegor, R. B.: Actinide valences in borosilicate glass. Radiochim. Acta. 39, 17 (1985).10.1524/ract.1985.39.1.17Search in Google Scholar

4. Karlina, O. K., Ovchinnikov, A. V., Ozhovan, M. I.: Immobilization of sulfate-containing wastes in borosilicate glass using fluoride additives. At. Energ. 76, 236 (1994).10.1007/BF02408200Search in Google Scholar

5. Sarkar, A., Mishra, R. K., Kaushik, C. P., Wattal, P. K., Alamelu, D., Aggarwal, S. K.: Analysis of barium borosilicate glass matrix for uranium determination by using ns-IR-LIBS in air and Ar atmosphere. Radiochim. Acta. 102, 805 (2014).10.1515/ract-2014-2243Search in Google Scholar

6. Shen, X. K., Lu, Y. F.: Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence. Appl. Opt. 47, 1810 (2008).10.1364/AO.47.001810Search in Google Scholar PubMed

7. Devangad, P., Unnikrishnan, V. K., Tamboli, M. M., Shameem, K. M. M., Nayak, R., Choudhari, K. S., Santhosh, C.: Quantification of Mn in glass matrices using laser induced breakdown spectroscopy (LIBS) combined with chemometric approaches. Anal. Methods 8, 7177 (2016).10.1039/C6AY01930GSearch in Google Scholar

8. Yun, J. I., Klenze, R., Kim, J. I.: Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt simulants. Part II: analyses of molten glass samples. Appl. Spectrosc. 56, 852 (2002).10.1366/000370202760171518Search in Google Scholar

9. Yun, J. I., Klenze, R., Kim, J. I.: Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt. Part I: characterization and evaluation of the method. Appl. Spectrosc. 56, 437 (2002).10.1366/0003702021955097Search in Google Scholar

10. Jung, E. C., Lee, D. H., Yun, J. I., Kim, J. G., Yeon, J. W., Song, K.: Quantitative determination of uranium and europium in glass matrix by laser-induced breakdown spectroscopy. Spectrochim. Acta B. 66, 761 (2011).10.1016/j.sab.2011.09.002Search in Google Scholar

11. Singh, M., Karki, V., Mishra, R. K., Kumar, A., Kaushik, C. P., Mao, X., Russo, R. E., Sarkar, A.: Analytical spectral dependent partial least squares regression: a study of nuclear waste glass from thorium based fuel using LIBS. J. Anal. At. Spectrom. 30, 2507 (2015).10.1039/C5JA00372ESearch in Google Scholar

12. Vadillo, J. M., Laserna, J. J.: Laser-induced plasma spectrometry: truly a surface analytical tool. Spectrochim. Acta B. 59, 147 (2004).10.1016/j.sab.2003.11.006Search in Google Scholar

13. Fichet, P., Mauchien, P., Moulin, C.: Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy. Appl. Spectrosc. 53, 1111 (1999).10.1366/0003702991947892Search in Google Scholar

14. Choi, I., Chan, G. C. -Y., Mao, X., Perry, D. L., Russo, R. E.: Line selection and parameter optimization for trace analysis of uranium in glass matrices by laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 67, 1275 (2013).10.1366/13-07066Search in Google Scholar

15. Whitehouse, A. I., Young, J., Botheroyd, I. M., Lawson, S., Evans, C. P., Wright, J.: Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochim. Acta B. 56, 821 (2001).10.1016/S0584-8547(01)00232-4Search in Google Scholar

16. Liu, H. T., Zhang, Z. X., Quentmeier, A., Niemax, K.: Measurement of uranium isotope ratio in solid sample by laser ablation and double-beam diode laser atomic absorption. Guang Pu Xue Yu Guang Pu Fen Xi. 24, 1244 (2004).Search in Google Scholar

17. Smith, C. A., Martinez, M. A., Veirs, D. K.: Gallium content in PuO2 using laser induced breakdown spectroscopy (LIBS). Global -99: “Nuclear Technology - Bridging the Millennia”, Proceedings of the International Conference on Future Nuclear Systems, Jackson Hole, WY, USA, Aug. 29–Sept. 3, 1999, p. 1898–1901.Search in Google Scholar

18. Smith, C. A., Martinez, M. A.: Laser induced breakdown spectroscopy (LIBS) applied to plutonium analysis. AIP Conference Proceedings. 532, 305 (2000).10.1063/1.1292305Search in Google Scholar

19. Smith, B. W., Quentmeier, A., Bolshov, M., Niemax, K.: Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry. Spectrochim. Acta B: Atomic spectroscopy. 54, 943 (1999).10.1016/S0584-8547(99)00022-1Search in Google Scholar

20. Akaoka, K., Maruyama, Y., Oba, M., Miyabe, M., Otobe, H., Wakaida, I.: Measurement of uranium spectrum using laser induced breakdown spectroscopy. Japan Atomic Energy Agency Report, JAEA-Research 2009–029, Japan, 2009.Search in Google Scholar

21. Blaise, J., Radziemski, L. J.: Energy levels of neutral atomic uranium (Ui). J. Opt. Soc. Am. 66, 644 (1976).10.1364/JOSA.66.000644Search in Google Scholar

22. Voigt, P. A.: Measurement of UI and UII relative oscillator strengths. Phys. Rev. A 11, 1845 (1975).10.1103/PhysRevA.11.1845Search in Google Scholar

23. Wang, Z., Feng, J., Li, L., Ni, W., Li, Z.: A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements. J. Anal. At. Spectrom. 26, 2175 (2011).10.1039/c1ja10113gSearch in Google Scholar

24. Li, X., Wang, Z., Fu, Y., Li, Z., Ni, W.: A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy. Spectrochim. Acta B. 99, 82 (2014).10.1016/j.sab.2014.06.017Search in Google Scholar

25. Li, X., Wang, Z., Lui, S. -L., Fu, Y., Li, Z., Liu, J., Ni, W.: A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements. Spectrochim. Acta B. 88, 180 (2013).10.1016/j.sab.2013.07.005Search in Google Scholar

26. Dyar, M. D., Carmosino, M. L., Breves, E. A., Ozanne, M. V., Clegg, S. M., Wiens, R. C.: Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples. Spectrochim. Acta B. 70, 51 (2012).10.1016/j.sab.2012.04.011Search in Google Scholar

27. Sarkar, A., Karki, V., Aggarwal, S. K., Maurya, G. S., Kumar, R., Rai, A. K., Mao, X., Russo, R. E.: Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy. Spectrochim. Acta B. 108, 8 (2015).10.1016/j.sab.2015.04.002Search in Google Scholar

28. Chan, G. C. Y., Mao, X., Choi, I., Sarkar, A., Lam, O. P., Shuh, D. K., Russo, R. E.: Multiple emission line analysis for improved isotopic determination of uranium – a computer simulation study. Spectrochim. Acta B. 89, 40 (2013).10.1016/j.sab.2013.09.001Search in Google Scholar

29. Sarkar, A., Alamelu, D., Aggarwal, S. K.: Gallium quantification in solution by LIBS in the presence of bulk uranium. Opt. Laser. Technol. 44, 30 (2012).10.1016/j.optlastec.2011.05.010Search in Google Scholar

30. Sarkar, A., Mao, X., Russo, R. E.: Advancing the analytical capabilities of laser ablation molecular isotopic spectrometry for boron isotopic analysis. Spectrochim. Acta B. 92, 42 (2014).10.1016/j.sab.2013.12.001Search in Google Scholar

Received: 2017-8-1
Accepted: 2017-12-5
Published Online: 2018-1-29
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2859/html
Scroll to top button