Home Efficient decontamination of naturally occurring radionuclide from aqueous carbonate solutions by ion flotation process
Article
Licensed
Unlicensed Requires Authentication

Efficient decontamination of naturally occurring radionuclide from aqueous carbonate solutions by ion flotation process

  • Mamdoh R. Mahmoud EMAIL logo and Sameh H. Othman
Published/Copyright: February 1, 2018

Abstract

The present study evaluates the performance of ion flotation process for removal of uranyl tricarbonate complex, UO2(CO3)34−, which is the dominant species in many aqueous media particularly seawater, from aqueous solutions using cetyltrimethylammonium bromide, CTAB, as a cationic surfactant. Flotation of UO2(CO3)34− as a function in the solution pH is investigated in absence and in presence of carbonate. Removal percentage >99% is achieved in the pH range 8.5–11.5 in presence of 5×10−3 M carbonate. The influence of concentrations of ethanol (0.1–2% v/v) and CTAB (5×10−5–1.4×10−3 M) show that UO2(CO3)34− is efficiently removed at concentrations of 0.5–1.5% v/v and 4×10−4–1×10−3 M, respectively. Based on the obtained kinetic data, the flotation mechanism and the flotation rate are investigated using two different flotation models. Floatability of UO2(CO3)34− in presence of different cations (Ba2+, Ca2+, Mg2+ and Sr2+) and anions (NO3, Br, Cl, SO42− and HPO42−) is studied. Except for Mg2+ and NO3, the flotation efficiency of UO2(CO3)34− is significantly decreased at concentrations higher than 1×10−3 and 5×10−3 M of the studied cations and anions, respectively. Ion flotation process is efficiently applied for removal of uranium(VI), R%>98.5%, from seawater. Accordingly, ion flotation can be considered as a promising technique and thus its feasibility for removal and/or recovery of uranium(VI) from many aqueous environment.

References

1. Yang, J., Liu, D., Wang, Y., Zhao, Y., Zhang, Y., Zhang, J., Zheng, C.: Release and the interaction mechanism of uranium and alkaline/alkaline-earth metals during coal combustion. Fuel 186, 405 (2016).10.1016/j.fuel.2016.08.053Search in Google Scholar

2. Barisic, D., Lulic, S., Miletic, P.: Radium and uranium content in phosphate fertilizers and their impact on the radioactivity of waters. Water Res. 26, 607 (1992).10.1016/0043-1354(92)90234-USearch in Google Scholar

3. Mohsendokht, M.: Risk assessment of uranium hexafluoride release from a uranium conversion facility by using a fuzzy approach. J. Loss Prev. Proc. Ind. 45, 217 (2017)10.1016/j.jlp.2017.01.004Search in Google Scholar

4. Bjørklund, G., Christophersen, O. A., Chirumbolo, S., Selinus, O., Aaseth, J.: Recent aspects of uranium toxicology in medical geology. Environ. Res. 156, 526 (2017).10.1016/j.envres.2017.04.010Search in Google Scholar PubMed

5. Dolatyari, L., Yaftian, M. R., Rostamnia, S.: Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manag. 169, 8 (2016).10.1016/j.jenvman.2015.12.005Search in Google Scholar PubMed

6. US Environmental Protection Agency (USEPA): Safe Drinking Water Act and Amendments. In: USEP Agency (Ed.), Washington, DC, 1974.Search in Google Scholar

7. Villalobos-Rodrıguez, R., Montero-Cabrera, M. E., Esparza-Ponce, H. E., Herrera-Peraza, E. F., Ballinas-Casarrubias, M. L.: Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl. Radiat. Isotopes 70, 872 (2012).10.1016/j.apradiso.2012.01.017Search in Google Scholar PubMed

8. Gotz, C., Geipel, G., Bernhard, G.: The influence of the temperature on the carbonate complexation of uranium(VI): a spectroscopic study. J. Radioanal. Nucl. Chem. 287, 961 (2011).10.1007/s10967-010-0854-4Search in Google Scholar

9. Pan, D., Fan, Q., Fan, F., Tang, Y., Zhang, Y., Wu, W.: Removal of uranium contaminant from aqueous solution by chitosan@attapulgite composite. Sep. Purif. Technol. 177, 86 (2017).10.1016/j.seppur.2016.12.026Search in Google Scholar

10. Torkabad, M. G., Keshtkar, A. R., Safdari, S. J.: Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution. Prog. Nucl. Energy 94, 93 (2017).10.1016/j.pnucene.2016.10.005Search in Google Scholar

11. Chen, C., Wang, J.: Uranium removal by novel graphene oxide-immobilized Saccharomyces cerevisiaegel beads. J. Environ. Radioact. 162–163, 134 (2016).10.1016/j.jenvrad.2016.05.012Search in Google Scholar PubMed

12. Li, F., Li, D., Li, X., Liao, J., Li, S., Yang, J., Yang, Y., Tang, J., Liu, N. Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem. Eng. J. 284, 630 (2016).10.1016/j.cej.2015.09.015Search in Google Scholar

13. Shirvani, S., Mallah, M. H., Moosavian, M. A., Safdari, J.: Magnetic ionic liquid in magmolecular process for uranium removal. Chem. Eng. Res. Des. 109, 108 (2016).10.1016/j.cherd.2016.01.014Search in Google Scholar

14. Shen, J., Schafer, A.: Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere 117, 679 (2014).10.1016/j.chemosphere.2014.09.090Search in Google Scholar

15. Kim, Y. S., Zeiltin, H.: Separation of uranium from sea water by adsorbing colloid flotation. Anal. Chem. 43, 1390 (1971).10.1021/ac60305a014Search in Google Scholar

16. Leung, G., Kim, Y. S., Zeitlin, H.: An improved separation and determination of uranium in seawater. Anal. Chim. Acta 60, 229 (1972).10.1016/S0003-2670(01)81905-XSearch in Google Scholar

17. Shakir, K., Samy, S.: Recovery of uranium(VI) from carbonate solutions by foaming. J. Less-Common Met. 71, 265 (1979).10.1016/0022-5088(80)90210-6Search in Google Scholar

18. Jaffrezic-Renault, N., Andrade-Martins, H.: Study of the retention mechanism of uranium on titanium oxide. J. Radioanal. Nucl. Chem. 55, 307 (1980).10.1007/BF02514416Search in Google Scholar

19. Lieser, K. H., Thybusch, B.: Sorption of uranyl ions on hydrous titanium dioxide. Fresenius Z. Anal. Chem. 332, 351 (1988).10.1007/BF00468814Search in Google Scholar

20. Song, Y., Wang, Y., Wang, L., Song, C., Yang, Z. Z., Zhao, A.: Recovery of uranium from carbonate solutions using strongly basic anion exchanger: 4. Column operation and quantitative analysis. React. Funct. Polym. 39, 245 (1999).10.1016/S1381-5148(98)00009-1Search in Google Scholar

21. Kazemian, H., Mobtaker, H. G., Mallah, M. H., Malekinedjad, A., Zanjanipour, M. A.: Removal of uranyl carbonate complex using zeolites and MCM-41/ZSM-5 composite. Stud. Surf. Sci. Catal. 154, 1880 (2004).10.1016/S0167-2991(04)80723-7Search in Google Scholar

22. Uranium from seawater report, issued by United Kingdom Atomic Energy Authority, October 1976.Search in Google Scholar

23. Grieves, R. B.: Foam separation: a review. Chem. Eng. J. 9, 93 (1975).10.1016/0300-9467(75)80001-3Search in Google Scholar

24. Ezzat, A., Mahmoud, M. R., Soliman, M. A., Saad, E. A., Kandil, A.: Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions. Radiochim. Acta 105, 205 (2017).10.1515/ract-2016-2618Search in Google Scholar

25. Soliman, M. A., Rashad, G. M., Mahmoud, M. R.: Fast and efficient cesium removal from simulated radioactive liquid waste by an isotope dilution-precipitate flotation process. Chem. Eng. J. 275, 342 (2015).10.1016/j.cej.2015.03.136Search in Google Scholar

26. Mahmoud, M. R., Lazaridis, N. K.: Simultaneous removal of nickel(II) and chromium(VI) from aqueous solutions and simulated wastewaters by foam separation. Sep. Sci. Technol. 50, 1421 (2015).10.1080/01496395.2014.978456Search in Google Scholar

27. Shakir, K., Ghoneimy, H. F., Beheir, S. G., Refaat, M.: Flotation of cesium coprecipitated with nickel hexacyanoferrate(II) from aqueous solutions and radioactive waste stimulants. Sep. Sci. Technol. 42, 1341 (2007).10.1080/01496390601174257Search in Google Scholar

28. Marine science: 2.1.1. Seawater composition. http://www.marinebio.net/marinescience/02ocean/swcomposition.htm.Search in Google Scholar

29. Marczenko, Z.: Spectrophotometric Determination of Elements, Halsted Press, John Wiley and Sons Inc., New York, 1976.Search in Google Scholar

30. Shakir, K., Elkafrawy, A. F., Ghoneimy, H. F., Beheir, S. G. E., Refaat, M.: Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Res. 44, 1449 (2010).10.1016/j.watres.2009.10.029Search in Google Scholar

31. Zouboulis, A. I., Jun, W., Katsoyiannis, I. A.: Removal of humic acids by flotation. Colloids Surf. A Physicochem. Eng. Asp. 231, 181 (2003).10.1016/j.colsurfa.2003.09.004Search in Google Scholar

32. Zouboulis, A. I., Peleka, E. N., Zamboulis, D., Matis, K. A.: Application of flotation for the separation of metal-loaded resins. Sep. Sci. Technol. 40, 861 (2005).10.1081/SS-200048177Search in Google Scholar

33. Cho, Y. S., Laskowski, J. S.: Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 64, 69 (2002).10.1016/S0301-7516(01)00064-3Search in Google Scholar

34. Uribe-Salas, A., Pérez-Garibay, R., Nava-Alonso, F., Castro-Román, M.: A Kinetic model for Pb2+ flotation with sodium dodecylsulfate in a batch column. Sep. Sci. Technol. 40, 3225 (2005).10.1080/01496390500385426Search in Google Scholar

35. Rubin, A. J., Johnson, J. D., Lamb, J. C.: Comparison of variables in ion and precipitate flotation. Ind. Environ. Chem. Process Des. Dev. 5, 368 (1966).10.1021/i260020a004Search in Google Scholar

36. Rubin, A. J.: Removal of trace metals by foam separation processes. J. Am. Water Work Assoc. 60, 822 (1968).10.1002/j.1551-8833.1968.tb03614.xSearch in Google Scholar

37. Moyer, B., Bonneses, P.: Physical Factors in Anion Separations (1997), Wiley, VCH, Weinheim, pp. 1–44.Search in Google Scholar

38. Behnsen, J., Riebe, B.: Anion selectivity of organobentonites. Appl. Geochem. 23, 2746 (2008).10.1016/j.apgeochem.2008.06.019Search in Google Scholar

39. Majdan, M., Maryuk, O., Pikus, S., Olszewska, E., Kwiatkowski, R., Skrzypek, H.: Equilibrium, FTIR, scanning electron microscopy and small wide angle X-ray scattering studies of chromates adsorption on modified bentonite. J. Mol. Struct. 740, 203 (2005).10.1016/j.molstruc.2005.01.044Search in Google Scholar

40. Geipel, G., Amayri, S., Bernhard, G.: Mixed complexes of alkaline earth uranyl carbonates: a laser-induced time-resolved fluorescence spectroscopic study. Spectrochim. Acta Part A 71, 53 (2008).10.1016/j.saa.2007.11.007Search in Google Scholar

41. Amayri, S., Reich, T., Arnold, T., Geipel, G., Bernhard, G.: Spectroscopic characterization of alkaline earth uranyl carbonates. J. Solid State Chem. 178, 567 (2005).10.1016/j.jssc.2004.07.050Search in Google Scholar

42. Kelly, S. D., Kemner, K. M., Brooks, S. C.: X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations. Geochim, Cosmochim. Acta 71, 821 (2007).10.1016/j.gca.2006.10.013Search in Google Scholar

43. Zhang, A., Uchiyama, G., Asakura, T.: pH Effect on the uranium adsorption from seawater by a macroporous fibrous polymeric material containing amidoxime chelating functional group. React. Funct. Polym. 63, 143 (2005).10.1016/j.reactfunctpolym.2005.02.015Search in Google Scholar

44. Kim, J., Tsouris, C., Mayes, R. T., Oyola, Y., Saito, T., Janke, C. J., Dai, S., Schneider, E., Sachde, D.: Recovery of uranium from seawater: a review of current status and future research needs. Sep. Sci. Technol. 48, 367 (2013).10.1080/01496395.2012.712599Search in Google Scholar

45. Vernon, F., Shah, T.: The extraction of uranium from seawater by poly(amidoxime)/poly(hydroxamic acid) resins and fibre. React. Polym. 1, 301 (1983).10.1016/0167-6989(83)90033-8Search in Google Scholar

46. Dojozan, D., Pournaghi-Azar, M. H., Toutounchi-Asr, J.: Preconcentration of trace uranium from seawater with solid phase extraction followed by differential pulse polarographic determination in chloroform eluate. Talanta 46, 123 (1998).10.1016/S0039-9140(97)00252-XSearch in Google Scholar

47. Singhal, P., Jha, S. K., Pandey, S. P., Neogy, S.: Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. J. Hazard. Mater. 335, 152 (2017).10.1016/j.jhazmat.2017.04.043Search in Google Scholar PubMed

48. Yu, H., Yang, S., Ruan, H., Shen, J., Gao, C., Bruggen, B.: Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Appl. Clay Sci. 111, 67 (2015).10.1016/j.clay.2015.01.035Search in Google Scholar

49. Das, S., Brown, S., Mayes, R. T., Janke, C. J., Tsouris, C., Kuo, L. J., Gill, G., Dai, S.: Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem. Eng. J. 298, 125 (2015).10.1016/j.cej.2016.04.013Search in Google Scholar

50. Leggett, C. J., Rao, L.: Complexation of calcium and magnesium with glutaridedioxime: implications for the extraction of uranium from seawater. Polyhedron 95, 54 (2015).10.1016/j.poly.2015.04.004Search in Google Scholar

Received: 2017-5-14
Accepted: 2017-12-3
Published Online: 2018-2-1
Published in Print: 2018-6-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2823/html
Scroll to top button