Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature
-
Ping Li
, Di Xu
und Wangsuo Wu
Abstract
The sorption of Eu(III) on potassium feldspar (K-feldspar) was studied under various physicochemical conditions such as pH, temperature, counter ions and organic matter. The results showed that the sorption of Eu(III) on K-feldspar significantly increased with the increase of pH, and high Eu(III) concentration can inhibit such immobility to some extent. The presence of humic acid (HA) can increase the sorption of Eu(III) on K-feldspar in low pH range; while inhibit to a large extent under alkaline conditions. It is very interesting that at pH ~6.5, high ionic strength can promote the sorption of Eu(III) on K-feldspar in the presence of HA. In contrast, Eu(III) sorption was restricted obviously by NaCl in the absence of HA. The sorption procedure was involved with ion exchange and/or outer-sphere complexation as well as inner-sphere complexation. The presence of F− and PO43− dramatically enhanced Eu(III) sorption on K-feldspar, whereas both SO42− and CO32− had negative effects on Eu(III) sorption. X-ray photoelectron spectroscopy analysis indicated that Eu(III) tended to form hydrolysates at high initial concentration (3×10−4 mol/L) and high temperature (338 K).
Acknowledgements
This work gets supports from the National Natural Science Foundation of China (21601169, 41573128, 21601179), the “100-Talent” program from Chinese Academy of Science in Lanzhou Center for Oil & Gas Resources, Institute of Geology and Geophysics, CAS “Light of West China” Program as well as the Key Laboratory of Special Function Materials and Structure Design, Ministry of Education.
References
1. Davison, C. C., Chan, T., Brown, A., Gascoyne, M., Kamineni, D. C., Lodha, G. S., Melnyk, T. W., Nakka, B. W., O’Connor, P. W., Ophori, D. U., Sheier, N. W., Soonawala, N. M., Stanchell, F. W., Stevenson, D. R., Thorne, G. A., Vandergraaf, T. T., Vilks, P., Whitaker, S. H.: The disposal of Canada’s nuclear fuel waste: The geosphere model for postclosure assessment. AECL Research report. AECL−10719. COG−93−9 (1994).Suche in Google Scholar
2. Aşçı, Y., Nurbaş, M., Sağ Açıkel, Y.: A comparative study for the sorption of Cd(II) by K-feldspar and sepiolite as soil components, and the recovery of Cd(II) using rhamnolipid biosurfactant. J. Environ. Manage. 88, 383 (2008).10.1016/j.jenvman.2007.03.006Suche in Google Scholar PubMed
3. Chardon, E. S., Livens, F. R., Vaughan, D. J.: Reactions of feldspar surfaces with aqueous solutions. Earth-Sci. Rev. 78, 1 (2006).10.1016/j.earscirev.2006.03.002Suche in Google Scholar
4. Ahmad, S. H. S. S.: Competitive adsorption of 90Sr on soil sediments, pure clay phases and feldspar minerals. Appl. Radiat. Isot. 46, 287 (1995).10.1016/0969-8043(95)00001-TSuche in Google Scholar
5. Walter, M., Arnold, T., Geipel, G., Schneinost, A., Bernhard, G.: An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces. J. Colloid Interf. Sci. 282, 293 (2005).10.1016/j.jcis.2004.08.133Suche in Google Scholar PubMed
6. Chardon, E. S., Bosbach, D., Bryan, N. D., Lyon, I. C., Marquardt, C., Römer, J., Schild, D., Vaughan, D. J., Wincott, P. L., Wogelius, R. A., Livens, F. R.: Reactions of the feldspar surface with metal ions: Sorption of Pb(II), U(VI) and Np(V), and surface analytical studies of reaction with Pb(II) and U(VI). Geochim. Cosmochim. Acta 72, 288 (2008).10.1016/j.gca.2007.10.026Suche in Google Scholar
7. Tan, X. L., Fan, Q. H., Wang, X. K., Grambow, B.: Eu(III) sorption to TiO2 (Anatase and Rutile): Batch, XPS, and EXAFS studies. Environ. Sci. Technol. 43, 3115 (2009).10.1021/es803431cSuche in Google Scholar PubMed
8. Fan, Q. H., Tan, X. L., Li, J. X., Wang, X. K., Wu, W. S., Montavon, G.: Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 43, 5776 (2009).10.1021/es901241fSuche in Google Scholar PubMed
9. Wang, X., Chen, Z., Wang, X.: Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions. Sci. China Chem. 58, 1766 (2015).10.1007/s11426-015-5435-5Suche in Google Scholar
10. Fukushi, K., Hasegawa, Y., Maeda, K., Aoi, Y., Tamura, A., Arai, S., Yamamoto, Y., Aosai, D., Mizuno, T.: Sorption of Eu(III) on granite: EPMA, LA−ICP−MS, batch and modeling studies. Environ. Sci. Technol. 47, 12811 (2013).10.1021/es402676nSuche in Google Scholar PubMed
11. Nick, D. B., Dominic, L. M. J., Rose, E. K., Dean, H. F., Liam, G. A., Aurelien, P., Peter, I., Peter, W., Nick, E.: The role of humic non-exchangeable binding in the promotion of metal ion transport in groundwaters in the environment. J. Environ. Monit. 9, 329 (2007).10.1039/b701891fSuche in Google Scholar PubMed
12. Verma, P. K., Pathak, P. N., Mohapatra, P. K., Godbole, S. V., Kadam, R. M., Veligzhanin, A. A., Zubavichus, Y. V., Kalmykov, S. N.: Influences of different environmental parameters on the sorption of trivalent metal ions on bentonite: batch sorption, fluorescence, EXAFS and EPR studies. Environ. Sci. Process. Impacts 16, 904 (2014).10.1039/c3em00563aSuche in Google Scholar PubMed
13. Kim, E., Kim, J., Choi, S., Chang, Y.: Sorption behavior of heavy metals on poorly crystalline manganese oxides: roles of water conditions and light. Environ. Sci.: Processes Impacts 16, 1519 (2014).10.1039/C4EM00044GSuche in Google Scholar
14. Li, P., Fan, Q. H., Pan, D. Q., Liu, S. P., Wu, W. S.: Effects of pH, ionic strength, temperature, and humic acid on Eu(III) sorption onto iron oxides. J. Radioanal. Nucl. Chem. 289, 757 (2011).10.1007/s10967-011-1153-4Suche in Google Scholar
15. Li, P., Yin, Z. X., Lin, J. F., Jin, Q., Du, Y. F., Fan, Q. H., Wu, W. S.: The immobilization of U(VI) on iron oxyhydroxides under various physicochemical conditions. Environ. Sci.: Processes Impacts 16, 2278 (2014).10.1039/C4EM00301BSuche in Google Scholar
16. Li, P., Liu, Z., Ma, F., Shi, Q. L., Guo, Z. J., Wu, W. S.: Effects of pH, ionic strength and humic acid on the sorption of neptunium(V) to Na-bentonite. J. Mol. Liq. 206, 285 (2015).10.1016/j.molliq.2015.02.014Suche in Google Scholar
17. Palmer, N. E., Wandruszka, R.: Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction. Environ. Sci. Pollut. Res. 17, 1362 (2010).10.1007/s11356-010-0322-2Suche in Google Scholar PubMed
18. Wang, Y. Q., Fan, Q. H., Li, P., Zheng, X. B., Xu, J. Z., Jin, Y. R., Wu, W. S.: The sorption of Eu(III) on calareous soil: effects of pH, ionic strenght, temperature foreign ions and humic acid. J. Radioanal. Nucl. Chem. 287, 231 (2011).10.1007/s10967-010-0809-9Suche in Google Scholar
19. Xu, J. Z., Fan, Q. H., Niu, Z. W., Li, Y., Li, P., Wu, W. S.: Studies of Eu(III) sorption on TiO2: Effects of pH, humic acid and poly(acrylic acid). Chem. Eng. J. 179, 186 (2012).10.1016/j.cej.2011.10.079Suche in Google Scholar
20. Kosmulski, M.: Adsorption of trivalent cations on silica. J. Colloid. Interf. Sci. 195, 395 (1997).10.1006/jcis.1997.5155Suche in Google Scholar PubMed
21. Tan, X., Fang, M., Li, J., Lu, Y., Wang, X.: Adsorption of Eu(III) onto TiO2: effect of pH concentration, ionic strength and soil fulvic acid. J. Hazard. Mater. 168, 458 (2009).10.1016/j.jhazmat.2009.02.051Suche in Google Scholar PubMed
22. Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J. J.: Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ. Sci. Technol. 38, 1399 (2004).10.1021/es0348344Suche in Google Scholar PubMed
23. Fairhurst, A. J., Warwick, P.: The influence of humic acid on europium–mineral interactions. Colloids Surf. A 145, 229 (1998).10.1016/S0927-7757(98)00662-1Suche in Google Scholar
24. Takahashi, Y., Kimura, T., Minai, Y.: Direct observation of Cm(III)-fulvate species on fulvic acid-montmorillonite hybrid by laser-induced fluorescence spectroscopy. Geochim. Cosmochim. Acta 66, 1 (2002).10.1016/S0016-7037(01)00748-7Suche in Google Scholar
25. Myneni, S. C. B., Brown, J. T., Martinez, G. A., Meyer-Ilse, W.: Imaging of humic substance macromolecular structures in water and soils. Science 286, 1335 (1999).10.1126/science.286.5443.1335Suche in Google Scholar PubMed
26. Stumpf, Th., Bauer, A., Coppin, F., Fanghänel, Th., Kim, J. I.: Inner-sphere, outer-sphere and ternary surface complexes: a TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite. Radiochim. Acta 90, 345 (2002).10.1524/ract.2002.90.6.345Suche in Google Scholar
27. Yang, S. T., Zong, P. F., Sheng, G. D., Ren, X.M., Huang, Y. Y., Wang, X. K.: New insight into Eu(III) sorption mechanism at alumina/water interface by batch technique and EXAFS analysis. Radiochim. Acta 102, 143 (2014).10.1515/ract-2014-2112Suche in Google Scholar
28. Fan, Q. H., Shao, D. D., Hu, J., Wu, W. S., Wang, X. K.: Comparison of Ni2+ sorption to bare and ACT-graft attapulgites: effect of pH, temperature and foreign ions. Surf. Sci. 602, 778 (2008).10.1016/j.susc.2007.12.007Suche in Google Scholar
29. Yang, S. T., Li, J. X., Shao, D. D., Hu, J., Wang, X. K.: Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109 (2009).10.1016/j.jhazmat.2008.11.003Suche in Google Scholar PubMed
30. Pan, D. Q., Fan, Q. H., Li, P., Liu, S. P., Wu, W. S.: Sorption of Th(IV) on Na-bentonite: Effects of pH, ionic strength, humic substances and temperature. Chem. Eng. J. 172, 898 (2011).10.1016/j.cej.2011.06.080Suche in Google Scholar
31. Fan, Q. H., Shao, D. D., Lu, Y., Wu, W. S., Wang, X. K.: Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chem. Eng. J. 150, 188 (2009).10.1016/j.cej.2008.12.024Suche in Google Scholar
32. Tan, L. Q., Jin, Y. L., Cheng, X. C., Wu, J., Zhou, W., Feng, L. D.: Sorption of radioeuropium onto attapulgite: effect of experimental conditions. J. Radioanal. Nucl. Chem. 290, 575 (2011).10.1007/s10967-011-1302-9Suche in Google Scholar
33. Turner, B. D., Binning, P., Stipp, S. L. S.: Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption. Environ. Sci. Technol. 39, 9561 (2005).10.1021/es0505090Suche in Google Scholar PubMed
34. Kau, P. M. H., Smith, D. W., Binning, P.: Experimental sorption of fluoride by kaolinite and bentonite. Geoderma. 84, 89 (1998).10.1016/S0016-7061(97)00122-5Suche in Google Scholar
35. Weijden, R. D., Meima, J., Comans, R. N. J.: Sorption and sorption reversibility of cadmium on calcite in the presence of phosphate and sulfate. Mar. Chem. 57, 2389 (1997).10.1016/S0304-4203(97)00018-2Suche in Google Scholar
36. Geelhoed, J. S., Hiemstra, T., Riemsdijk, W. H.: Phosphate and sulfate adsorption on goethite: single anion and competitive adsorption. Geochim. Cosmochim. Acta 61, 875 (1997).10.1016/S0016-7037(97)00096-3Suche in Google Scholar
37. Kumar, S., Pente, A. S., Bajpai, R. K., Kaushik, C. P., Tomar, B. S.: Americium sorption on smectite-rich natural clay from granitic ground water. Appl. Geochem. 35, 28 (2013).10.1016/j.apgeochem.2013.05.016Suche in Google Scholar
38. Pathak, P. N. and Choppin, G. R.: Effect of complexing anions on europium sorption on suspended silica: a TRLFS study for ternary complex formation. Radiochim. Acta 95, 267 (2007).10.1524/ract.2007.95.5.267Suche in Google Scholar
39. Tiberg, C., Sjöstedt, C., Persson, I., Gustafsson, J. P.: Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite. Geochim. Cosmochim. Acta 120, 140 (2013).10.1016/j.gca.2013.06.012Suche in Google Scholar
40. Ren, X. M., Yang, S. T., Tan, X. L., Chen, C. L., Sheng, G. D., Wang, X. K.: Mutual effects of copper and phosphate on their interaction with γ-Al2O3: Combined batch macroscopic experiments with DFT calculations. J. Hazard. Mater. 237/238, 199 (2012).10.1016/j.jhazmat.2012.08.032Suche in Google Scholar PubMed
41. Fan, Q. H., Xu, J. Z., Niu, Z. W., Li, P., Wu, W. S.: Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques. Appl. Radiat. Isot. 70, 13 (2012).10.1016/j.apradiso.2011.07.004Suche in Google Scholar PubMed
42. Yang, S. T., Zhao, D. L., Zhang, H., Lu, S. S., Chen, L., Yu, X. J.: Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions. J. Hazard. Mater. 183, 632 (2002).10.1016/j.jhazmat.2010.07.072Suche in Google Scholar PubMed
43. Tertre, E., Berger, G., Simoni, E., Castet, S., Giffaut, E., Loubet, M., Catalette, H.: Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modelling. Geochim. Cosmochim. Acta 70, 4563 (2006).10.1016/j.gca.2006.06.1568Suche in Google Scholar
44. Wu, W. S., Fan, Q. H., Xu, J. Z., Niu, Z. W., Lu, S. S.: Sorption–desorption of Th(IV) on attapulgite: Effects of pH, ionic strength and temperature. Appl. Radiat. Isot. 65, 1108 (2007).10.1016/j.apradiso.2007.05.009Suche in Google Scholar PubMed
45. Sharma, P., Tomar, R.: Sorption behaviour of nanocrystalline MOR type zeolite for Th(IV) and Eu(III) removal from aqueous waste by batch treatment. J. Colloid Interf. Sci. 362, 144 (2011).10.1016/j.jcis.2011.06.030Suche in Google Scholar PubMed
46. Sheng, G., Dong, H., Shen, R., Li, Y.: Microscopic insights into the temperature-dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem. Eng. J. 217, 486 (2013).10.1016/j.cej.2012.10.076Suche in Google Scholar
47. Fan, Q. H., Li, P., Zheng, Z., Wu, W. S., Liu, C. L.: Insights into sorption species of Eu(III) on γ-Al2O3 and bentonite under different pH: Studies at macro- and micro-scales. J. Radioanal. Nucl. Chem. 299, 1767 (2014).10.1007/s10967-013-2819-xSuche in Google Scholar
Supplemental Material:
The online version of this article (DOI: https://doi.org/10.1515/ract-2017-2797) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Excitation functions of proton induced nuclear reactions on natFe up to 16 MeV, with emphasis on radiochemical determination of low cross sections
- A new optical sensor for spectrophotometric determination of uranium (VI) and thorium (IV) in acidic medium
- Removal of U(VI) from aqueous solution using TiO2 modified β-zeolite
- Removal of uranium from ammonium nitrate solution by nanofiltration
- Biosorption of strontium ions from aqueous solution using modified eggshell materials
- Effects of synthesis conditions on ion exchange properties of α-zirconium phosphate for Eu and Am
- Effect on Cs removal of solid-phase metal oxidation in metal ferrocyanides
- Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature
- Sonication assisted dissolution of post-detonation nuclear debris using ammonium bifluoride
- Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process
Artikel in diesem Heft
- Frontmatter
- Excitation functions of proton induced nuclear reactions on natFe up to 16 MeV, with emphasis on radiochemical determination of low cross sections
- A new optical sensor for spectrophotometric determination of uranium (VI) and thorium (IV) in acidic medium
- Removal of U(VI) from aqueous solution using TiO2 modified β-zeolite
- Removal of uranium from ammonium nitrate solution by nanofiltration
- Biosorption of strontium ions from aqueous solution using modified eggshell materials
- Effects of synthesis conditions on ion exchange properties of α-zirconium phosphate for Eu and Am
- Effect on Cs removal of solid-phase metal oxidation in metal ferrocyanides
- Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature
- Sonication assisted dissolution of post-detonation nuclear debris using ammonium bifluoride
- Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process