Home Biosorption of strontium ions from aqueous solution using modified eggshell materials
Article
Licensed
Unlicensed Requires Authentication

Biosorption of strontium ions from aqueous solution using modified eggshell materials

  • Sayed S. Metwally EMAIL logo , Hoda E. Rizk and Mona S. Gasser
Published/Copyright: May 20, 2017

Abstract

Green composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin–Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO3, desorption percent was found to be 96.4%; the results revealed the reusability of the modified eggshell for further sorption.

References

1. Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F.: Adsorption characteristics of strontium on synthesized antimony silicate. Chem. Eng. J. 277, 378 (2015).10.1016/j.cej.2015.04.145Search in Google Scholar

2. Mu, W., Yu, Q., Li, X., Wei, H., Jian, Y.: Efficient removal of Cs+ and Sr2+ from aqueous solution using hierarchically structured hexagonal tungsten trioxide coated Fe3O4. Chem. Eng. J. 319, 170 (2017).10.1016/j.cej.2017.02.153Search in Google Scholar

3. Kaplan, D. I., Miller, T. J., Diprete, D., Powell, B. A.: Long-term radiostrontium interactions and transport through sediment. Environ. Sci. Technol. 48, 8919 (2014).10.1021/es5021108Search in Google Scholar PubMed

4. Nielsen, P.: The biological role of strontium. Bone 35, 583 (2004).10.1016/j.bone.2004.04.026Search in Google Scholar PubMed

5. Dai, Q. W., Zhang, W., Dong, F. Q., Zhao, Y. L, Wu, X. L.: Effect of γ-ray radiation on the biosorption of strontium ions to baker’s yeast. Chem. Eng. J. 249, 226 (2014).10.1016/j.cej.2014.03.109Search in Google Scholar

6. Sidhu, S. H., Hriljac, J. A., Cuthbert, M. O., Renshaw, J. C., Pattrick, R. A. D., Charnock, J. M., Stolpe, B., Lead, J. R., Baker, S., Macaskie, L. E.: Bacterially produced calcium phosphate nanobiominerals: sorption capacity, site preferences, and stability of captured radionuclides. Environ. Sci. Technol. 48, 6891 (2014).10.1021/es500734nSearch in Google Scholar PubMed

7. Goto, T., Sasaki, K.: Synthesis of morphologically controlled hydroxyapatite from fish bone by urea-assisted hydrothermal treatment and its Sr2+ sorption capacity. Powd. Technol. 292, 314 (2016).10.1016/j.powtec.2016.01.041Search in Google Scholar

8. Yuichi, N., Tadashi, H., Jun Y., Yoko, Y., Toshiro, O.: Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J. Radioanal. Nucl. Chem. 307, 1279 (2016).10.1007/s10967-015-4228-9Search in Google Scholar PubMed PubMed Central

9. İnan, S., Altaş, Y.: Preparation of zirconium-manganese oxide/polyacrylonitrile (Zr–Mn oxide/PAN) composite spheres and the investigation of Sr(II) sorption by experimental. Design. Chem. Eng. J. 168, 1263 (2011).10.1016/j.cej.2011.02.038Search in Google Scholar

10. Kasar, S., Kumar, S., Kar, A., Bajpai, R. K., Kaushik, C. P., Tomar, B. S.: Retention behavior of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay. J. Radioanal. Nucl. Chem. 300, 71 (2014).10.1007/s10967-014-2943-2Search in Google Scholar

11. Chen, H., Li, J. X., Zhang, S. W., Ren, X. M., Sun, Y. B., Wen, T., Wang, X. K.: Study on the acid base surface property of the magnetite graphene oxide and its usage for the removal of radiostrontium from aqueous solution. Radiochim. Acta 101, 785 (2013).10.1524/ract.2013.2099Search in Google Scholar

12. Ahmad, M., Usman, A. R. A., Lee, S. S., Kim, S. C., Joo, J. H., Yang, J. E., Ok, Y. S.: Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J. Ind. Eng. Chem. 18, 198 (2012).10.1016/j.jiec.2011.11.013Search in Google Scholar

13. Flores-Cano, J. V., Leyva-Ramos, R., Mendoza-Barron, J., Guerrero-Coronado, R. M., Aragon-Pina, A., Labrada-Delgado, G. J.: Sorption mechanism of Cd(II) from water solution onto chicken eggshell. Appl. Surf. Sci. 276, 682 (2013).10.1016/j.apsusc.2013.03.153Search in Google Scholar

14. Metwally, S. S., Ayoub, R. R., Aly, H. F.: Utilization of low-cost sorbent for removal and separationof 134Cs, 60Co and 152+154Eu radionuclides from aqueous solution. J. Radioanal. Nucl. Chem. 302, 441 (2014).10.1007/s10967-014-3185-zSearch in Google Scholar

15. McGarvey, G. B., Moffat, J. B.: Ion-exchange properties of microporous monovalent salts of 12-tungstophosphoric acid and 12-molybdophosphoric acid catalysts. J. Catal. 128, 69 (1991).10.1016/0021-9517(91)90067-ESearch in Google Scholar

16. Mc Monagle, J. B., Moffat, J. B.: Pore structures of the monovalent salts of the heteropoly compounds, 12-tungstophosphoric and 12-molybdophosphoric acid. J. Coll. Interf. Sci. 1, 479 (1984).10.1016/0021-9797(84)90060-2Search in Google Scholar

17. Kozhevnikov, I. V.: Sustainable heterogeneous acid catalysis by heteropoly acid. J. Molec. Catal. A: Chem. 262, 86 (2007).10.1016/j.molcata.2006.08.072Search in Google Scholar

18. Briand, L. E., Baronetti, G. T., Thomas, H. J.: The state of the art on Wells–Dawson heteropoly-compounds. A review of their properties and applications. Appl. Catal. A: General 256, 37 (2003).10.1016/S0926-860X(03)00387-9Search in Google Scholar

19. Zhao, Y., Li, F., Zhang, R., Evans, D., Duan, X.: Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem. Mater. 14, 4286 (2002).10.1021/cm020370hSearch in Google Scholar

20. Powder Diffraction File, International Center for Diffraction Data, Pennsylvania, USA (2002). Available online from http://www.icdd.com.Search in Google Scholar

21. Mosaddegh, E., Hassankhani, A.: Application and characterization of eggshell as a new biodegradable and heterogeneous catalyst in green synthesis of 7,8-dihydro-4H-chromen-5(6H)-ones. Catal. Commun. 33, 70 (2013).10.1016/j.catcom.2012.12.013Search in Google Scholar

22. Metwally, S. S., El-Gammal, B., Aly, H. F. Abo-El-Enein, S. A.: Removal and separation of some radionuclides by polyacrylamide based Ce(IV) Phosphate from radioactive waste solutions. Sep. Sci. Technol. 46, 1808 (2011).10.1080/01496395.2011.572328Search in Google Scholar

23. Keereeta, Y., Thongtem, T., Thongtem, S.: Synthesis of lanthanum tungstate interconnecting nanoparticles by high voltage electrospinning. Appl. Surf. Sci. 351, 1075 (2015).10.1016/j.apsusc.2015.05.194Search in Google Scholar

24. Badrinarayanan, P., Michael Kessler, R.: Zirconium tungstate/cyanate ester nanocomposites with tailored thermal expansivity. Compos. Sci. Technol. 71, 1385 (2011).10.1016/j.compscitech.2011.05.004Search in Google Scholar

25. Ramir, M., Rafiuddin, K.: Synthesis, characterization and properties of polystyrene incorporated calcium tungstate membrane and studies of its physicochemical and transport behavior. J. Molec. Struct. 1033, 145 (2013).10.1016/j.molstruc.2012.07.057Search in Google Scholar

26. Yuzer, H., Kara, M., Sabah, E., Celik, M. S.: Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. J. Hazard. Mater. 151, 33 (2008).10.1016/j.jhazmat.2007.05.052Search in Google Scholar PubMed

27. Metwally, S. S., Ayoub, R. R., Aly, H. F.: Amidoximation of cyano group for chelating ion exchange of some heavy metal ions from wastewater. Sep. Sci. Technol. 48, 1829 (2013).10.1080/01496395.2012.755697Search in Google Scholar

28. Metwally, S. S., Rizk, H. E.: Preparation and characterization of nano-Sized iron–titanium mixed oxide for removal of some lanthanides from aqueous solution. Sep. Sci. Technol. 49, 2426 (2014).10.1080/01496395.2014.926457Search in Google Scholar

29. El-Kamash, A. M.: Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J. Hazard. Mater. 151, 432 (2008).10.1016/j.jhazmat.2007.06.009Search in Google Scholar PubMed

30. El-Gammal, B., Metwally, S. S., Aly, H. F., Abo-El-Enein, S. A.: Verification of double-shell model for sorption of cesium, cobalt, and europium ions on poly-acrylonitrile-based Ce(IV) phosphate from aqueous solutions. Desal. Water Treat. 46, 124 (2012).10.1080/19443994.2012.677412Search in Google Scholar

31. Abd El-Latif, M. M., Ibrahim, A. M., El-Kady, M. F.: Adsorption equilibrium, kinetic and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. J. Am. Sci. 6, 270 (2010).10.5004/dwt.2009.501Search in Google Scholar

32. Zaki, A. A., El-Zakla, T., Abed El Geleel, M.: Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J. Memb. Sci. 401–402, 1 (2012).10.1016/j.memsci.2011.12.044Search in Google Scholar

33. Ghaemi, A., Meisam, T. M., Mohammad, G. M.: Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J. Hazard. Mater. 190, 916 (2011).10.1016/j.jhazmat.2011.04.006Search in Google Scholar PubMed

34. Torab-Mostaedi, M., Ghaemi, A., Ghassabzadeh, H., Ghannadi-Maragheh, M.: Removal of strontium and barium from aqueous solutions by adsorption onto expanded Perlite. Can. J. Chem. Eng. 89, 1247 (2011).10.1002/cjce.20486Search in Google Scholar

35. Qiu, Y., Yu, S. M., Song, Y. F., Wang, Q., Zhong, S. S., Tian, W. X.: Investigation of solution chemistry effects on sorption behavior of Sr(II) on sepiolite fibers. J. Mol. Liq. 180, 244 (2013).10.1016/j.molliq.2013.02.003Search in Google Scholar

36. Zhao, Y., Shao, Z. Y., Chen, C. L., Hu, J., Chen, H. L.: Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite. Appl. Clay Sci. 87, 1 (2014).10.1016/j.clay.2013.11.021Search in Google Scholar

37. Ma, B., Oh, S. Shin, W. S., Choi, S. J.: Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination 276, 336 (2011).10.1016/j.desal.2011.03.072Search in Google Scholar

38. Yin, Y., Wang, J., Yang, X., Li, W.: Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres. Nucl. Eng. Technol. 49, 172 (2017).10.1016/j.net.2016.09.002Search in Google Scholar

39. Yu, S., Mei, H., Chen, X., Tan, X., Ahmad, B., Alsaedi, A., Hayat, T., Wang, X.: Impact of environmental conditions on the sorption behavior of radionuclide 90Sr(II) on Na-montmorillonite. J. Molec. Liq. 203, 39 (2015).10.1016/j.molliq.2014.12.041Search in Google Scholar

40. Huang, Y., Wang, W., Feng, Q., Dong, F.: Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. J. Saudi Chem. Society 21, 58 (2017).10.1016/j.jscs.2013.09.005Search in Google Scholar

Received: 2016-11-19
Accepted: 2017-4-13
Published Online: 2017-5-20
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2729/html
Scroll to top button