Abstract
The adsorption of thorium(IV) was studied using a pseudo-polyrotaxane, which was obtained by the reaction of poly(propyleneglycol) (PPG) and 6-OTs-β-CD. The adsorption of thorium(IV) was examined as a function of the contact time, pH of the solution, adsorbent dose, concentration of thorium(IV) and temperature using batch adsorption experiments. The experimental results suggested that the optimum conditions were found to be at pH 3.5, contact time 40 min, 10 mg adsorbent doses, 20 mg L−1 thorium(IV) concentration and 298 K. The maximum adsorption capacity was found to be 15.366 mg g−1. The thermodynamic parameters (ΔG0<0, ΔH0<0) were calculated, the result showed that the adsorption of thorium(IV) was exothermic and spontaneous process.
Acknowledgment
This study was supported by National Natural Science Foundation of China (No. 11375084), Nature Science Foundation of Hunan (No. 2017JJ4046), Hunan Provincial Innovation Foundation for Postgraduate (No. CX2017B523).
References
1. Aggarwal, S. K.: A review on the mass spectrometric analysis of thorium. Radiochim. Acta 104, 1 (2016).10.1515/ract-2015-2559Suche in Google Scholar
2. Li, W., Yang, S., Lv, H., Liu, Z., Wu, J., Li, S., Shen, Y.: Solvent extraction of Th(IV) from aqueous solution with methylimidazole in ionic liquid. Radiochim. Acta 104, 681 (2016).10.1515/ract-2015-2450Suche in Google Scholar
3. Peng, J. F., Liu, J. F., Hu, X. L., Jiang, G. B.: Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J. Chromatogr. A 1139, 165 (2007).10.1016/j.chroma.2006.11.006Suche in Google Scholar PubMed
4. Someda, H. H., Sheha, R. R.: Solid phase extractive preconcentration of some actinide elements using impregnated carbon. Radiochemistry 50, 56 (2008).10.1134/S1066362208010086Suche in Google Scholar
5. Liu, P., Qi, W., Du, Y., Li, Z., Wang, J., Bi, J., Wu, W.: Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci. China Chem. 57, 1483 (2014).Suche in Google Scholar
6. Lin, C., Wang, H., Wang, Y., Cheng, Z.: Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative. Talanta 81, 30 (2010).10.1016/j.talanta.2009.11.032Suche in Google Scholar PubMed
7. Khalili, F., Albanna, G.: Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil – Jordan. J. Environ. Radioact. 146, 16 (2015).10.1016/j.jenvrad.2015.03.035Suche in Google Scholar PubMed
8. Yang, S. K., Tan, N., Yan, X. M., Chen, F., Long, W., Lin, Y. C.: Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar. Pollut. Bull. 74, 213 (2013).10.1016/j.marpolbul.2013.06.055Suche in Google Scholar PubMed
9. Xu, J., Zhou, L., Jia, Y., Liu, Z., Adesina, A. A.: Adsorption of thorium (IV) ions from aqueous solution by magnetic chitosan resins modified with triethylene-tetramine. J. Radioanal. Nucl. Chem. 303, 347 (2015).10.1007/s10967-014-3227-6Suche in Google Scholar
10. Hadjittofi, L., Pashalidis, I.: Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalination Water Treat. 1, 1 (2016).10.1080/19443994.2016.1168580Suche in Google Scholar
11. Liu, P., Qi, W., Du, Y., Li, Z., Wang, J., Bi, J., Wu, W.: Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci. China 57, 1483 (2014).10.1007/s11426-014-5204-xSuche in Google Scholar
12. Kaynar, Ü. H., Şabikoğlu, I., Kaynar, S. Ç., Eral, M.: Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology. Appl. Radiat. Isot. 115, 280 (2016).10.1016/j.apradiso.2016.06.033Suche in Google Scholar PubMed
13. Chen, C. L., Li, X. L., Wang, X. K.: Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption. Radiochim. Acta 95, 261 (2011).10.1524/ract.2007.95.5.261Suche in Google Scholar
14. Alipour, D., Keshtkar, A. R., Moosavian, M. A.: Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems. Appl. Surf. Sci. 366, 19 (2016).10.1016/j.apsusc.2016.01.049Suche in Google Scholar
15. Akkaya, R.: Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite. J. Environ. Radioact. 1, 58 (2013).10.1016/j.jenvrad.2012.11.015Suche in Google Scholar
16. Kore, G. D., Patil, S. A., Anuse, M. A., Kolekar, S. S.: An extractive studies on behavior of thorium(IV) from malonate media by 2-octylaminopyridine: a green approach. J. Radioanal. Nucl. Chem. 1, 1 (2016).10.1007/s10967-016-4857-7Suche in Google Scholar
17. Harada, A., Li, J., Kamachi, M.: Preparation and characterization of a polyrotaxane consisting of monodisperse poly(ethylene glycol) and α-cyclodextrins. Am. Chem. Soc. 116(8), 136 (1994).10.1021/ja00087a004Suche in Google Scholar
18. Liu, Y., You, C. C., Zhang, H.-Y., Kang, S. Z., Zhu, C. F., Wang, C.: Bis(molecular tube)s: supramolecular assembly of complexes of organoselenium-bridged β-cyclodextrins with platinum(IV). Am. Chem. Soc. 1, 11 (2001).10.1021/nl015550pSuche in Google Scholar
19. Li, J.: Cyclodextrin-based self-assembled supramolecular hydrogels and cationic polyrotaxanes for drug and gene delivery applications. J. Drug Deliv. Sci. Technol. 20(6), 399 (2010).10.1016/S1773-2247(10)50071-6Suche in Google Scholar
20. Collins, C. J., McCauliff, L. A., Hyun, S. H., Zhang, Z., Paul, L. N., Kulkarni, A., Zick, K., Wirth, M., Storch, J., Thompson, D. H.: Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick Type C Fibroblasts. Biochemistry 52(19), 3242 (2013).10.1021/bi3010889Suche in Google Scholar PubMed PubMed Central
21. Abbasizadeh, S., Keshtkar, A. R., Mousavian, M. A.: Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem. Eng. J. 220(6), 161 (2013).10.1016/j.cej.2013.01.029Suche in Google Scholar
22. Xiong, J., Hu, S., Liu, Y., Yu, J., Yu, H., Xie, L., Wen, J., Wang, X.: Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustain. Chem. Eng. 5(2), 1924 (2017).10.1021/acssuschemeng.6b02663Suche in Google Scholar
23. Hu, C., Liu, H. J., Peng, L., Sun, Y. K., Long, W.: Synthesis of ethylamine-bridged β-cyclodextrins and adsorption properties of thorium. J. Radioanal. Nucl. Chem. 308, 251 (2016).10.1007/s10967-015-4306-zSuche in Google Scholar
24. Jing, P. F., Liu, H. J., Zhang, Q., Hu, S. Y., Hu, C., Peng, L., Lei, L. L.: Study on adsorption of trace thorium(IV) using 6-o-monotosyl-deoxy-β-cyclodextrin inclusion complex of dibenzoyl. J. Radioanal. Nucl. Chem. 308, 287 (2016).10.1007/s10967-015-4387-8Suche in Google Scholar
25. Zhang, N., Liu, H.-J., Sun, Y.-K.: Adsorption of thorium by 6-O-monotosyl-deoxy-β-cyclodextrin inclusion complex of N,N′-diphenyl thiourea. Yuanzineng Kexue Jishu/At. Energy Sci. Technol. 49, 19 (2015).Suche in Google Scholar
26. Song, L. X., Guo, X. Q., Du, F. Y., Bai, L.: Thermal degradation comparison of polypropylene glycol and its complex with β-cyclodextrin. Polym. Degrad. Stab. 95, 508 (2010).10.1016/j.polymdegradstab.2009.12.025Suche in Google Scholar
27. Song, L. X., Du, F. Y., Guo, X. Q., Pan, S. Z.: Formation, characterization, and thermal degradation behavior of a novel tricomponent aggregate of beta-cyclodextrin, ferrocene, and polypropylene glycol. J. Phys. Chem. B 114, 1738 (2010).10.1021/jp910633jSuche in Google Scholar PubMed
28. Rojasmena, A. R., Lópezgonzález, H., Rojashernández, A.: Preparation and characterization of holmium-β-cyclodextrin complex. Adv. Mater. Phys. Chem. 5(3), 87 (2015).10.4236/ampc.2015.53011Suche in Google Scholar
29. Jing, P. F., Liu, H. J., Zhang, Q., Hu, S. Y., Lei, L. L., Feng, Z. Y.: Kinetics and thermodynamics of adsorption of Benzil-bridged β-cyclodextrin on Uranium(VI)[J]. Acta Phys.-Chim. Sin. 32(8), 1933 (2016).10.3866/PKU.WHXB201604212Suche in Google Scholar
30. Song, L. X., Du, F. Y., Guo, X. Q., Pan, S. Z.: Formation, characterization, and thermal degradation behavior of a novel tricomponent aggregate of β-cyclodextrin, ferrocene, and polypropylene glycol. J. Phys. Chem. B 114, 1738 (2010).10.1021/jp910633jSuche in Google Scholar PubMed
31. Ključarić, V., Kobetić, R., Rinkovec, J., Kazazić, S., Gembarovski, D., Saftić, D., Matić, J., Ban, Ž., Žinić, B.: ESI-MS studies of the non-covalent interactions between biologically important metal ions and N-sulfonylcytosine derivatives. J. Mass Spectrom. 51(11), 998 (2016).10.1002/jms.3810Suche in Google Scholar PubMed
32. Langmuir, D., Herman, J. S.: The mobility of thorium in natural waters at low temperatures. Geochim. Cosmochim. Acta 44, 1753 (1980).10.1016/0016-7037(80)90226-4Suche in Google Scholar
33. Giri, A. K., Patel, R. K., Mahapatra, S. S.: Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus, biomass. Chem. Eng. J. 178, 15 (2011).10.1016/j.cej.2011.09.111Suche in Google Scholar
34. Zhao, D. L., Feng, S. J., Chen, C. L., Chen, S. H., Xu, D., Wang, X. K.: Adsorption of thorium(IV) on MX-80 bentonite: effect of pH, ionic strength and temperature. Appl. Clay Sci. 41, 17 (2008).10.1016/j.clay.2007.09.012Suche in Google Scholar
35. Asgari, G., Roshani, B., Ghanizadeh, G.: The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J. Hazard. Mater. 8, 123 (2012).10.1016/j.jhazmat.2012.03.003Suche in Google Scholar
36. Giri, A. K., Patel, R. K., Mahapatra, S. S.: Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus, biomass. Chem. Eng. J. 178(24), 15 (2011).10.1016/j.cej.2011.09.111Suche in Google Scholar
37. Landgren, A., Ramebäck, H.: A kinetic model for the oxidation of U(IV) to U(VI) with O2: determination of stability constants via oxidation kinetic experiments. Radiochim. Acta 89, 75 (2015).10.1524/ract.2001.89.2.075Suche in Google Scholar
38. Starvin, A. M., Rao, T. P.: Solid phase extractive preconcentration of uranium (VI) onto diarylazobisphenol modified activated carbon. Talanta 63, 225 (2004).10.1016/j.talanta.2003.11.001Suche in Google Scholar PubMed
39. Li, S. N., Bai, H. B., Wang, J.: In situ grown of nano-hydroxyapatie on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chem. Eng. 193–194, 372 (2012).10.1016/j.cej.2012.04.025Suche in Google Scholar
40. Zhou, L. M., Shang, C., Liu, Z. R., Huang, G. L., Adesina, A. A.: Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. Colloid Interface 366, 165 (2012).10.1016/j.jcis.2011.09.069Suche in Google Scholar
41. Mellah, A., Chegrouche, S., Barkat, M.: The removal of uranium (VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. Colloid Interface 296, 434 (2006).10.1016/j.jcis.2005.09.045Suche in Google Scholar
42. Grant, D. J. W., Mehdizadeh, M., Chow, H. L., Fairbrother, J. E.: Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation. Int. J. Pharm. 18, 25 (1984).10.1016/0378-5173(84)90104-2Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Measurement and uncertainty propagation of the (γ,n) reaction cross-section of 58Ni and 59Co at 15 MeV bremsstrahlung
- Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole–modified carbamoylmethylphosphine oxide from nitric acid solutions
- Transport behavior of actinides and lanthanides across a supported liquid membrane using an unexplored monoamide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA)
- Removal of trace thorium(IV) from aqueous solutions using a pseudo-polyrotaxane
- Surface decontamination in fuel manufacture plants by chelating solution of nanoparticles
- Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging
- Determination of natural radiation levels and lifetime cancer risk in Kırıkkale, Turkey
- Chemical characterization and radiation exposure from the natural radioactivity in Romanian building materials
- Tailored silica nanospheres: an efficient adsorbent for environmental chromium remediation
Artikel in diesem Heft
- Frontmatter
- Measurement and uncertainty propagation of the (γ,n) reaction cross-section of 58Ni and 59Co at 15 MeV bremsstrahlung
- Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole–modified carbamoylmethylphosphine oxide from nitric acid solutions
- Transport behavior of actinides and lanthanides across a supported liquid membrane using an unexplored monoamide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA)
- Removal of trace thorium(IV) from aqueous solutions using a pseudo-polyrotaxane
- Surface decontamination in fuel manufacture plants by chelating solution of nanoparticles
- Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging
- Determination of natural radiation levels and lifetime cancer risk in Kırıkkale, Turkey
- Chemical characterization and radiation exposure from the natural radioactivity in Romanian building materials
- Tailored silica nanospheres: an efficient adsorbent for environmental chromium remediation