Home Tailored silica nanospheres: an efficient adsorbent for environmental chromium remediation
Article
Licensed
Unlicensed Requires Authentication

Tailored silica nanospheres: an efficient adsorbent for environmental chromium remediation

  • Zarshad Ali , Rashid Ahmad EMAIL logo and Aslam Khan
Published/Copyright: January 17, 2018

Abstract

This manuscript reports the synthesis and characterization of caprylpyrazolone tailored silica nanospheres, synthesized through sol–gel procedure by activating the silica nanospheres with organosilane precursor and grafting with caprylpyrazolone. Its successful attachment to the silica is confirmed by FTIR, TGA and elemental techniques. The feasibility of the synthesized nanospheres as adsorbent was systematically checked by elimination of trace level of Cr(III) from aqueous medium, using radiotracer technique. A number of factors such as effect of pH, agitation time, adsorbent and adsorbate dosage were optimized to guarantee the use of the adsorbent for practical use. Various counter ions were added to the matrix solution to check the selectivity of the synthesized sorbent. Various rate equations and adsorption isotherms such as Freundlich, D-R and Langmuir were employed to suggest the mechanistic pathway of the adsorption process. The Cr(III) extraction was monitored at room and elevated temperatures and thermodynamic parameters such as change in enthalpy, entropy, and Gibbs free energy of the metal ion uptake were computed. The removal of Cr(III) is endothermic (∆H=30.00 J mol−1 K−1) and spontaneous (∆S=105.43 J mol−1 K−1) in nature. Application of the adsorbent to real water samples demonstrated the practical utility of the adsorbent. The sorbent displayed good stability. Its cleaning efficiency is not significantly affected after various adsorption-desorption cycles and so it can be used repeatedly.

References

1. Samiey, B., Cheng, C. H., Wu, J.: Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Material 7, 673 (2014).10.3390/ma7020673Search in Google Scholar

2. Soylak, M., Narin, I., Divrikli, U., Saracoglu, S., Elci, L., Dogan, M.: Preconcentration separation of heavy metal ions in environmental samples by membrane filtration-atomic absorption spectrometry combination. Anal. Lett. 37, 767 (2005).10.1081/AL-120029751Search in Google Scholar

3. Cychosz, K. A., Ahmad, R., Matzger, A. J.: Liquid phase separation by microporous coordination polymers. Chem. Sci. 1, 293 (2010).10.1039/c0sc00144aSearch in Google Scholar

4. Mahmoud, M. E., Hafez, O. F., Alrefaay, A., Osman, M. M.: Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration of heavy metals from drinking and industrial waste water. Desalination 253, 9 (2010).10.1016/j.desal.2009.11.044Search in Google Scholar

5. Rahmi, D., Zhu, Y., Fujimori, E., Umemura, T., Haraguchi, H.: Multielement determination of trace metals in seawater by ICP-MS with aid of down-sized chelating resin-packed minicolumn for preconcentration. Talanta 72, 600 (2007).10.1016/j.talanta.2006.11.023Search in Google Scholar PubMed

6. Wen, B., Shan, X., Xu, S.: Preconcentration of ultra-trace rare earth elements in seawater with 8-hydroxyquinoline immobilized poly acrylonitrile hollow fiber membrane for determination by ICP mass spectrometry. Analyst 124, 621 (1999).10.1039/a809854iSearch in Google Scholar

7. Espinola, J. G. P., Oliveira, S. F., Lemus, W. E. S. Souza, A. G., Airoldi, C., Moreira, J. C. A.: Chemisorption of Cu(II) and Co(II) chlorides and β-diketonates on silica gel functionalized with 3-aminopropyltrimethoxysilane. Colloids Surf. A 166, 45 (2000).10.1016/S0927-7757(99)00493-8Search in Google Scholar

8. Zare-Dorabei, R., Jalalat, V.: Central composite design optimization of Ce(III) ion removal from aqueous solution using modified SBA-15 mesoporous silica. New J. Chem. 40, 5128 (2016).10.1039/C6NJ00239KSearch in Google Scholar

9. Raj, G., Swalus, C., Guillet, A., Devillers, M., Nysten, B., Gaigneaux, E. M.: Supra molecular organization in organic-inorganic heterogeneous hybrid catalysts formed from polyoxometalate and poly(ampholyte) polymer. Langmuir 29, 4388 (2013).10.1021/la400055tSearch in Google Scholar

10. Kotaś, J., Stasicka, Z.: Chromium occurrence in the environment and methods of its speciation. Environ. Pollution 107, 263 (2000).10.1016/S0269-7491(99)00168-2Search in Google Scholar

11. Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., Naidu, R.: Chemistry of chromium in soils with emphasis on tannery waste sites. Rev. Environ. Contam. Toxicol. 178, 53 (2003).10.1007/0-387-21728-2_3Search in Google Scholar PubMed

12. Milacic, R., Stupar, J.: Fractionation and oxidation of chromium in tannery waste-and sewage sludge-amended soils. Environ. Sci. Technol. 29(2), 506 (1995).10.1021/es00002a029Search in Google Scholar

13. Mirza, M.: The use of 1-phenyl-3-methyl-4-capryl-pyrazolone-5 in liquid-liquid extraction method for the carrier-free production of Mn54, Co58, Fe59. Int. J. App. Rad. Isot. 18(12), 849 (1967).10.1016/0020-708X(67)90007-5Search in Google Scholar

14. Tong, A., Akama, Y., Tanaka, S.: Pre-concentration of copper, cobalt and nickel with 3-methyl-1-phenyl-4-stearoyl-5-pyrazolone loaded on silica gel. Analyst 115, 947 (1990).10.1039/an9901500947Search in Google Scholar

15. Alizadeh, A., Khodae, M. M., Kordestani, D., Fallah, A. H., Beygzadeh, M.: The successful synthesis of biguanide-functionalized mesoporous silica catalysts: excellent reactivity combined with facile catalyst recyclability. Micropor. Mesopor. Mat. 159, 9 (2012).10.1016/j.micromeso.2012.03.019Search in Google Scholar

16. Machado, Jr, R. S. A., da Fonseca, M. G., Arakaki, L. N. H., Espinola, J. G. P., Oliveira, S. F.: Silica gel containing sulfur, nitrogen and oxygen as adsorbent centers on surface for removing copper from aqueous/ethanolic solutions. Talanta 63, 317 (2004).10.1016/j.talanta.2003.10.048Search in Google Scholar PubMed

17. Arakaki, L. N. H., Filha, V. L. S., Germano, A. F. S., Santos, S. S. G., Fonseca, M. G., Sousa, K. S., Espínola, J. G. P., Arakaki, T.: Silica gel modified with ethylene diamine and succinic acid–adsorption and calorimetry of cations in aqueous solution. Thermo. Chim. Acta 556, 34 (2013).10.1016/j.tca.2013.01.024Search in Google Scholar

18. Zhang, L., Zhao, C., Yu, W., Hua, Z., Chen, H., Shi, L., Li, J.: Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption. J. Non-Cryst. Sol. 353, 4055 (2007).10.1016/j.jnoncrysol.2007.06.018Search in Google Scholar

19. Benes, P., Majar, V.: Trace Chemistry of Aqueous Solutions. Elsevier, Amsterdam (1980).Search in Google Scholar

20. Memon, J. U., Memon, S. Q., Bhanger, M. I., Khuhawar, M. Y.: Use of modified sorbent for the separation and preconcentration of chromium species from industrial wastewater. J. Hazard. Mater. 163, 511 (2009).10.1016/j.jhazmat.2008.07.001Search in Google Scholar PubMed

21. Marahel, F., Ghaedi, M., Montazerozohori, M., Biyareh, M. N., Kokhdan, S. N., Soylak, M.: Solid-phase extraction and determination of trace amount of some metal ions on Duolite XAD 761 modified with a new schiff base as chelating agent in some food samples. Food Chem. Toxicol. 49, 208 (2011).10.1016/j.fct.2010.10.018Search in Google Scholar PubMed

22. Ahmad, R., Hasany, S. M., Chaudhary, M. H.: Adsorption characteristics of Cr (III) ions onto coconut husk from aqueous solution. Adsorp. Sci. Technol. 23(6), 467 (2005).10.1260/026361705774859929Search in Google Scholar

23. Khan, A., Mahmood, F., Khokhar, M. Y., Ahmad, S.: New thiocarbamate doped sol-gel silica extractant for chromium (III). Main Group Met Chem. 27(5), 281 (2004).10.1515/MGMC.2004.27.5.281Search in Google Scholar

24. Baes, Jr, C. F., Mesmer, R. E.: The Hydrolysis of Cations. Wiley, New York (1976).Search in Google Scholar

25. Barquist, K., Larsen, S. C.: Chromate adsorption on amine-functionalized anocrystalline silicalite-1. Micropor. Mesopor. Mat. 116, 365 (2008).10.1016/j.micromeso.2008.04.025Search in Google Scholar

26. Ozmen, M., Can, K., Akin, I., Arslan, G., Tor, A., Cengeloglu, Y. Ersoz, M.: Surface modification of glass beads with glutaraldehyde: characterization and their adsorption property for metal ions. J. Hazard. Mater. 171, 594 (2009).10.1016/j.jhazmat.2009.06.045Search in Google Scholar PubMed

27. Tadjarodi, A., Jalalat, V., Zare-Dorabei, R.: Adsorption of La(III) in aqueous systems by N-(2-hydroxyethyl) salicylaldimine-functionalized mesoporous silica. Mater. Res. Bull. 61, 113 (2015).10.1016/j.materresbull.2014.09.036Search in Google Scholar

28. Ali, Z., Khan, A., Ahmad, R.: The use of functionalized aerogels as a low level chromium scavenger. Micropor. Mesopor. Mat. 203, 8 (2015).10.1016/j.micromeso.2014.10.004Search in Google Scholar

29. Egodawatte, S., Datt, A., Burns, E. A., Larsen, S. C.: Chemical insight into the adsorption of chromium (III) on iron oxide/ mesoporous silica nanocomposites. Langmuir 31(27), 7553 (2015).10.1021/acs.langmuir.5b01483Search in Google Scholar PubMed

30. Luther, S., Brogfeld, N., Kim, J., Parsons, J. G.: Study of the thermodynamics of chromium(III) and chromium(VI) binding to iron(II/III)oxide or magnetite or ferrite and manganese (II) iron (III) oxide or Jacob site or manganese ferrite nanoparticles. J. Colloid. Interf. Sci. 400, 97 (2013).10.1016/j.jcis.2013.02.036Search in Google Scholar PubMed PubMed Central

31. Zhang, F., Lan, J., Zhao, Z. S., Yang, Y., Tan, R. Q., Song, W. J.: Removal of heavy metal ions from aqueous solution using Fe3O4-SiO2-poly(1,2-diaminobenzene) core-shell sub-micron particles. J. Colloid. Interf. Sci. 387, 205 (2012).10.1016/j.jcis.2012.07.066Search in Google Scholar PubMed

32. Wu, S. J., Li, F. T., Xu, R., Wei, S. H., Li, G. T.: Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu(II), Pb(II), Ag(I), and Cr(III) removal. J. Nanopart. Res. 12, 2111 (2010).10.1007/s11051-009-9770-3Search in Google Scholar

33. Da’na, E., Sayari, A.: Adsorption of heavy metals on amine functionalized SBA-15 prepared by co-condensation: applications to real water samples. Desalination 285, 62 (2012).10.1016/j.desal.2011.09.034Search in Google Scholar

34. Nam, K. H., Tavlarides, L. L.: Synthesis of a high-density phosphonic acid functional mesoporous adsorbent: application to chromium(III) removal. Chem. Mater. 17, 1597 (2005).10.1021/cm048269vSearch in Google Scholar

35. Lyubchik, S. I., Lyubchik, A. I., Galushko, O. L., Tikhonova, L. P., Vital, J., Fonseca, I. M., Lyubchik, S. B.: Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf. A 242(1), 151 (2004).10.1016/j.colsurfa.2004.04.066Search in Google Scholar

36. Weber, W. J., Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89(17), 31 (1963).10.1061/JSEDAI.0000430Search in Google Scholar

37. Hu, X., Wang, J., Liu, Y., Li, X., Zeng, G., Bao, Z., Zeng, X., Chen, A., Long, F.: Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J. Hazard. Mater. 185(1) 306 (2011).10.1016/j.jhazmat.2010.09.034Search in Google Scholar PubMed

38. Cheung, W., Szeto, Y., McKay, G.: Intra particle diffusion processes during acid dye adsorption onto chitosan. Bio. Resource Technol. 98(15), 2897 (2007).10.1016/j.biortech.2006.09.045Search in Google Scholar PubMed

39. Li, X., Zheng, W., Wang, D., Yang, Q., Cao, J., Yue, X., Shen, T., Zeng, G.: Removal of Pb (II) from aqueous solutions by adsorption onto modified areca waste: kinetic and thermodynamic studies. Desalination 258(1), 148 (2010).10.1016/j.desal.2010.03.023Search in Google Scholar

40. Reichenberg, D.: Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 75(3), 589 (1953).10.1021/ja01099a022Search in Google Scholar

41. Ali, Z., Ahmad, R., Khan, A.: Functionalized nanospheres for efficient sequestration of cadmium ions. RSC Adv. 91, 50056 (2014).10.1039/C4RA09780GSearch in Google Scholar

42. Marín, A. P., Aguilar, M., Meseguer, V., Ortuno, J., Sáez J., Lloréns, M.: Biosorption of chromium(III) by orange (Citrus cinensis) waste: batch and continuous studies. Chem. Eng. J. 155(1), 199 (2009).10.1016/j.cej.2009.07.034Search in Google Scholar

43. Dursun, A. Y., Kalayci, C. S.: Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J. Hazard. Mater. 123, 151 (2005).10.1016/j.jhazmat.2005.03.034Search in Google Scholar PubMed

44. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918).10.1021/ja02242a004Search in Google Scholar

45. Freundlich, H.: Over the adsorption in solution. Phy. Chem. Soc. 40, 1361 (1906).Search in Google Scholar

46. Dubinin, M. M., Zaverina, E. D., Radushkevich, L. V.: Sorption and structure of active carbons. I. adsorption of organic vapors. Zhurnal Fizicheskoi Khimii. 21, 1351 (1947).Search in Google Scholar

47. Crini, G., Badot, P.: Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399 (2008).10.1016/j.progpolymsci.2007.11.001Search in Google Scholar

48. Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P., Li, N.: Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348 (2010).10.1016/j.cej.2009.11.013Search in Google Scholar

49. Guan, X., Chang, J., Chen, Y., Fan, H.: A magnetically-separable Fe3O4 nanoparticle surface grafted with poly acrylic acid for chromium (III) removal from tannery effluents. RSC Adv. 5(62), 50126 (2015).10.1039/C5RA06659JSearch in Google Scholar

Received: 2017-8-9
Accepted: 2017-11-8
Published Online: 2018-1-17
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2861/html
Scroll to top button