Abstract
A nanoparticles chelating solution was synthesized by copolymerization of acrylonitrile (AN) and methacrylic acid (MAA) by radiation induced polymerization technique using 17 kGy irradiation doses. A high copolymer yield was obtained by using 80/20% of AN/MAA and comonomer concentration of 50% (w/w) at a dose rate of 2.58 KGy/h. The resultant cyano group (–CN) of nano-poly(AN/MAA) was converted by chemical modification using hydroxylamine (NH2–OH) to an amidoxime group [–C(=NOH)NH2], which was then confirmed by Fourier transform infrared spectroscopy (FTIR). The physico-chemical properties of poly(AN/MAA) and amidoximated poly(AN/MAA) nanoparticles were studied by FTIR, transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermal gravimetric analysis (TGA). The morphological analysis by TEM and DLS showed a spherical and uniform size of the amidoximated poly(AN/MAA) nanoparticles. TGA results indicated that the thermal stability of poly(AN/MAA) increased by the amidoximation process. The surface decontamination due to uranium was also investigated by the prepared chelating nanoparticles solution. A high purity germanium detector (HPGe) was used as a surface contamination detection tool. The results showed the presence of peaks at different energies, namely, 186.2 keV for Ra-226 (U-238) and 143.76 keV, 163.35 keV and 205.31 for U-235 before the decontamination process. The disappearance of these peaks after decontamination confirmed the applicability and efficiency of the nanoparticles solution in uranium surface decontamination.
References
1. Kohli, R., Mittal, K.L.: Strippable coatings for removal of surface contaminants. In: Developments in Surface Contamination and Cleaning: Particle Deposition, Control and Removal, vol. 2 (2009), W. Andrew Pub, New York, p. 177.10.1016/B978-1-4377-7830-4.10005-2Search in Google Scholar
2. Cramer, S. D., Covino Jr, B. S., Moosbrugger, C., Sanders, B. R., Anton, G. J., Hrivnak, N., Scott Jr, W. W.: ASM Handbook. Corrosion: Environments and Industries, vol. 1 (2003), ASM International, New York.Search in Google Scholar
3. Kumar, V., Goel, R., Chawla, R., Silambarasan, M., Sharma, R. K.: Chemical, biological, radiological, and nuclear decontamination: recent trends and future perspective. J. Pharm. Bioallied Sci. 2(3), 220 (2010).10.4103/0975-7406.68505Search in Google Scholar PubMed
4. Auffan, M., Shipley, H. J., Yean, S., Kan, A. T., Tomson, M., Rose, J. Bottero, J. Y.: Nanomaterials as adsobents. In: M. R. Wiesner, J. Y. Bottero (Eds), Environmental Nanotechnology: Applications and Impacts of Nanomaterials (2007), McGraw-Hill, New York, p. 371.Search in Google Scholar
5. Schulte, J., Dutta, J.: Nanotechnology in environmental protection and pollution. Sci. Technol. Adv. Mater. 6, 219 (2005).10.1016/j.stam.2005.03.009Search in Google Scholar
6. Drobot, B., Bauer, A., Steudtner, R., Tsushima, S., Bok, F., Patzschke, M., Brendler, V.: Speciation studies of metals in trace concentrations: the mononuclear uranyl (VI) hydroxo complexes. Analyt. Chem. 88(7), 3548 (2016).10.1021/acs.analchem.5b03958Search in Google Scholar
7. Turhanen, P. A., Vepsäläinen, J. J., Peräniemi, S.: Advanced material and approach for metal ions removal from aqueous solutions. Sci. Rep. 5, 8992 (2015).10.1038/srep08992Search in Google Scholar PubMed
8. Ghobashy, M., Khafaga, M. R.: Chemical modification of nanopolyacrylonitrile prepared by emulsion polymerization induced by gamma radiation and their use for removal of some metal ions. J. Polym. Environ. 25(2), 343 (2017).10.1007/s10924-016-0805-4Search in Google Scholar
9. Wang, C. Z., Lan, J. H., Wu, Q. Y., Luo, Q., Zhao, Y. L., Wang, X. K., Chai, Z. F., Shi, W. Q.: Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. Inorg. Chem. 53, 9466 (2014).10.1021/ic500202gSearch in Google Scholar PubMed
10. Badawy, S. M.: Uranium isotope enrichment by complexation with chelating polymer adsorbent. Radiat. Phys. Chem. 66, 67 (2003).10.1016/S0969-806X(02)00204-9Search in Google Scholar
11. Badawy, S. M., Dessouki, A. M., Abu-Eittah, R. H.: Synthesis and characterization of chelating filter paper for selective adsorption of uranium. Proceedings of World Filtration Congress 8, 3–7 April, Filtration Society, UK (2000).Search in Google Scholar
12. Kawai, T., Saito, K., Sugita, K., Kawakami, T., Kanno, J., Katakai, A., Sek, N., Sugo, T.: Preparation of hydrophilicamidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat. Phys. Chem. 59, 405 (2000).10.1016/S0969-806X(00)00298-XSearch in Google Scholar
13. Yetimoglu, E. K., Kahraman, M. V., Ercan, O., Akdemir, Z. S., Apohan, N. K.: N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React. Funct. Polym. 67, 451 (2007).10.1016/j.reactfunctpolym.2007.02.007Search in Google Scholar
14. Zhao, Y., Li, J., Zhao, L., Zhang, S., Huang, Y., Wu, X., Wang, X.: Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 235, 275 (2014).10.1016/j.cej.2013.09.034Search in Google Scholar
15. Katakai, A., Seko, N., Kawakami, T., Saito, K., Sugo, T.: Adsorption of uranium in sea water using amidoxime adsorbents prepared by radiation-induced cografting. J. Atom. Energ. Soc. Jpn. 40, 878 (1998).10.3327/jaesj.40.878Search in Google Scholar
16. Katakai, A., Seko, N., Sugo, T.: Adsorption performance in sea water of amidoxime nonwoven fabrics prepared by radiation-induced cografting of acrylonitrile and methacrylic acid. Bull. Soc. Sea Water Sci. Jpn. 53, 180 (1999).Search in Google Scholar
17. Omichi, H., Katakai, A., Sugo, T., Okamot, J.: A new type of amidoxime-group-containg adsorbent for recovery of uranium from seawater. II. Effect of grafting of hydrophilic monomers. Sep. Sci. Technol. 21, 299 (1986).10.1080/01496398608058379Search in Google Scholar
18. Omichi, H., Katakai, A., Sugo, T., Okamoto, J.: A new type of amidoxime-group-containing adsorbent for recovery of uranium from seawater. III. Recycle use of adsorbent. Sep. Sci. Technol. 21, 563 (1986).10.1080/01496398608056135Search in Google Scholar
19. Sakaguchi, T., Nakajima, A.: Recovery of uranium by immobilized polyhydroxyanthraquinone. Sep. Sci. Technol. 29, 205 (1994).10.1080/01496398608056132Search in Google Scholar
20. Kabay, N.: Preparation of amidoximesuber-adsorbents based on poly-(methacrylonitrile) for recovery of uranium from seawater. Sep. Sci. Technol. 29, 375 (1994).10.1080/01496399408002489Search in Google Scholar
21. Choi, S. H., Nho, Y. C.: Adsorption of UO22+ by polyethylene hollow fiber membrane with amidoxime group. J. Macromol. Sci. Pure Appl. Chem. A 37, 1053 (2000).10.1081/MA-100101140Search in Google Scholar
22. Guo, X., Xiong, X. G., Li, C., Gong, H., Huai, P., Hu, J., Jin, C., Huang, L., Wu, G.: DFT investigations of uranium complexation with amidoxime-, carboxyl- and mixed amidoxime/carboxyl-based host architectures for sequestering uranium from seawater. Inorg. Chim. Acta 441, 117 (2016).10.1016/j.ica.2015.11.013Search in Google Scholar
23. Othman, S. H., Sohsah, M. A., Ghoneim, M. M., Sokkar, H. H., Badawey, S. M., El Anadouli, B. E.: Adsorption of hazardous ions from radioactive waste on chelating cloth filter. Radiat. Phys. Chem. 75, 278 (2006).10.1016/j.radphyschem.2005.08.020Search in Google Scholar
24. Badawy, S. M., Sokkar, H. H., Othman, S. H., Hashem, A.: Cloth filters for recovery of uranium from radioactive waste. Radiat. Phys. Chem. 73, 125 (2005).10.1016/j.radphyschem.2004.08.003Search in Google Scholar
25. Othman, S. H., Ali, A. H., Mansour, N. A., El-Anadouli, B. E.: The effect of external and internal diffusion on the sorption of radioactive ions by reactive cloth filter – part I. J. Radioanalyt. Nucl. Chem. 291, 685 (2012).10.1007/s10967-011-1421-3Search in Google Scholar
26. Othman, S. H., Sohsah, M. A., Ghoneim, M. M.: The effects of hazardous ions adsorption on the morphological and chemical properties of reactive cloth filter. Radiat. Phys. Chem. 78, 976 (2009).10.1016/j.radphyschem.2009.06.009Search in Google Scholar
27. Bayramoglu, G., Arica, M. Y.: MCM-41 silica particles grafted with polyacrylonitrile: modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater. 226, 117 (2016).10.1016/j.micromeso.2015.12.040Search in Google Scholar
28. ISO/ASTM 51261, Standard Guide for Selection and Calibration of Dosimetry Systems for Radiation Processing, ASTM International, West Conshohocken, PA, (2004).Search in Google Scholar
29. Pekel, N., Şahiner, N., OlgunGüven, O.: Use of amidoximated acrylonitrile/N-vinyl 2-pyrrolidone interpenetrating polymer networks for uranyl ion adsorption from aqueous systems. J. Appl. Polym. Sci. 81, 2324 (2001).10.1002/app.1673Search in Google Scholar
30. Kang, D. W., Choi, H. R., Kweon, D. K.: Stability constants of amidoximated chitosan-g-poly (acrylonitrile) copolymer for heavy metal ions. J. Appl. Polym. Sci. 73(4), 469 (1999).10.1002/(SICI)1097-4628(19990725)73:4<469::AID-APP2>3.0.CO;2-ISearch in Google Scholar
31. Grassie, N.: Novel types of chain reactions in polymer degradation. J. Polym. Sci. 48(150), 79 (1960).10.1002/pol.1960.1204815009Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Measurement and uncertainty propagation of the (γ,n) reaction cross-section of 58Ni and 59Co at 15 MeV bremsstrahlung
- Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole–modified carbamoylmethylphosphine oxide from nitric acid solutions
- Transport behavior of actinides and lanthanides across a supported liquid membrane using an unexplored monoamide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA)
- Removal of trace thorium(IV) from aqueous solutions using a pseudo-polyrotaxane
- Surface decontamination in fuel manufacture plants by chelating solution of nanoparticles
- Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging
- Determination of natural radiation levels and lifetime cancer risk in Kırıkkale, Turkey
- Chemical characterization and radiation exposure from the natural radioactivity in Romanian building materials
- Tailored silica nanospheres: an efficient adsorbent for environmental chromium remediation
Articles in the same Issue
- Frontmatter
- Measurement and uncertainty propagation of the (γ,n) reaction cross-section of 58Ni and 59Co at 15 MeV bremsstrahlung
- Effect of ionic liquid on the extraction of actinides and lanthanides with 1,2,3-triazole–modified carbamoylmethylphosphine oxide from nitric acid solutions
- Transport behavior of actinides and lanthanides across a supported liquid membrane using an unexplored monoamide, N,N′-bis(2-ethyl hexyl) α-hydroxy acetamide (BEHGA)
- Removal of trace thorium(IV) from aqueous solutions using a pseudo-polyrotaxane
- Surface decontamination in fuel manufacture plants by chelating solution of nanoparticles
- Radioiodination and biological evaluation of mesalamine as a tracer for ulcerative colitis imaging
- Determination of natural radiation levels and lifetime cancer risk in Kırıkkale, Turkey
- Chemical characterization and radiation exposure from the natural radioactivity in Romanian building materials
- Tailored silica nanospheres: an efficient adsorbent for environmental chromium remediation