Startseite Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

  • Gennadii A. Badun EMAIL logo , Maria G. Chernysheva , Anastasia V. Grigorieva , Elena A. Eremina und Alexander V. Egorov
Veröffentlicht/Copyright: 8. Juni 2016

Abstract

Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm−1, a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

Acknowledgement

This work was supported by Russian Foundation of Basic Research (14-03-00280, 15-33-70050, 16-08-00706).

References

1. Tran, P.A., Zhang, L., Webster, T.J.: Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Delivery Rev. 61, 1097 (2009). DOI:10.1016/j.addr.2009.07.010Suche in Google Scholar PubMed

2. Cherukuri, P., Gannon, C.J., Leeuw, T.K., Schmidt, H.K., Smalley, R.E., Curley, S.A., Weisman, R.B.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. PNAS. 103(50), 18882, (2006). DOI:10.1073/pnas.0609265103Suche in Google Scholar PubMed PubMed Central

3. Chin, S.-F., Baughman, R.H., Dalton, A.B., Dieckmann, G.R., Draper, R.K., Mikoryak, C., Musselman, I.H., Poenitzsch, V.Z, Xie, H., Pantano, P.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232(9), 1236 (2007). DOI:10.3181/0612-RM-284Suche in Google Scholar PubMed

4. Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS. 105(5), 1410 (2008). DOI:10.1073/pnas.0707654105Suche in Google Scholar PubMed PubMed Central

5. Keren, S., Zavaleta, C., Cheng, Z., de la Zerda, A., Gheysens, O., Gambhir, S.S.: Noninvasive molecular imaging of small living subjects using Raman spectroscopy. PNAS. 105(15), 5844 (2008). DOI:10.1073/pnas.0710575105Suche in Google Scholar PubMed PubMed Central

6. Bhirde, A.A., Patel, V., Gavard, J., Zhang, G., Sousa, A.A., Masedunskas, A., Leapman, R.D., Weigert, R., Gutkind, J.S., Rusling, J.F.: Targeted killing of cancer cells in vivo and in vitro with EGFdirected carbon nanotube-based drug delivery. ACS Nano 3(2), 307 (2009). DOI:10.1021/nn800551sSuche in Google Scholar PubMed PubMed Central

7. Zamaleeva, A.I., Sharipova, I.R., Porfireva, A.V., Evtugyn, G.A., Fakhrullin, R.F.: Polyelectrolyte-mediated assembly of multi-walled carbon nanotubes on living yeast cells. Langmuir 26(4), 2671 (2010). DOI:10.1021/la902937sSuche in Google Scholar PubMed

8. Wang, H., Wang, J., Deng, X., Sun, H., Shi, Z., Gu, Z., Liu, Y., Zhao, Y.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotech 4, 1019 (2004). DOI:10.1166/jnn.2004.146Suche in Google Scholar PubMed

9. Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., Fan, C., Huang, Q.: Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49, 986 (2011). DOI:10.1016/j.carbon.2010.11.005Suche in Google Scholar

10. Petersen, E.J., Huang, Q., Weber, Jr, W.J.: Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ. Sci. Technol. 42(8), 3090 (2008). DOI:10.1021/es071366Suche in Google Scholar

11. Georgin, D., Czarny, B., Botquin, M., Mayne-L’Hermite, M., Pinault, M., Bouchet-Fabre, B., Carriere, M., Poncy, J.-L., Chau, Q., Maximilien, R., Dive, V., Taran, F.: Preparation of 14C-labeled multi-walled carbon nanotubes for biodistribution investigations. J. Am. Chem. Soc. 131, 14658 (2009). DOI:10.1021/ja906319zSuche in Google Scholar

12. Chandna, P., Saad, M., Wang, Y., Ber, E., Khandare, J., Vetcher, A.A., Soldatenkov, V.A., Minko, T.: Targeted proapoptotic anticancer drug delivery system. Mol. Pharmaceutics 4(5), 668 (2007). DOI:10.1021/mp070053oSuche in Google Scholar

13. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652 (2008). DOI:10.1158/0008-5472.CAN-08-1468Suche in Google Scholar

14. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS. 103(9), 3357 (2006). DOI:10.1073/pnas.0509009103Suche in Google Scholar

15. Tritiated planar carbon forms. US Patent 20110306084 A1.Suche in Google Scholar

16. Badun, G.A., Chernysheva, M.G., Yakovlev, R. Yu., Leonidov, N.B., Semenenko, M.N., Lisichkin G.V.: A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method. Radiochim. Acta 102(10), 941 (2014). DOI:10.1515/ract-2013-2155Suche in Google Scholar

17. Girard, H.A., El-Kharbachi, A., Garcia-Argote, S., Petit, T., Bergonzo, P., Rousseau, B., Arnault, J.-C.: Tritium labeling of detonation nanodiamonds. Chem. Commun. 50, 2916 (2014). DOI:10.1039/c3cc49653hSuche in Google Scholar

18. Worsley, K.A., Kalinina, I., Bekyarova, E., Haddon, R.C.: Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 18153 (2009). DOI:10.1021/ja906267gSuche in Google Scholar

19. Kaszuba, M., McKnight, D., Connah, M.T., McNeil-Watson, F.K., Nobbmann, U.: Measuring sub nanometre sizes using dynamic light scattering. J. Nanoparticle. Res. 10, 823 (2008). DOI:10.1007/s11051-007-9317-4Suche in Google Scholar

20. International Standard ISO13321 (1996). Methods for determination of particle size distribution part 8: photon correlation spectroscopy. International Organization for Standardization (ISO).Suche in Google Scholar

21. Hunter, R.J., Ottewill, R.H., Rowell, R.L.: Zeta Potential in Colloid Science, Academic Press: London, 1981.Suche in Google Scholar

22. Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Saito, R.: Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043 (2002). DOI:10.1016/S0008-6223(02)00066-0Suche in Google Scholar

23. Badun, G.A., Chernysheva,M.G., Tyasto, Z.A., Kulikova, N.A., Kudryavtsev, A.V., Perminova, I.V.: A new technique for tritium labeling of humic substances. Radiochim. Acta. 98(3), 161 (2010). DOI:10.1524/ract.2010.1695Suche in Google Scholar

24. Langmuir, I.: A chemically active modification of hydrogen. J. Am. Cherm. Soc. 34(10), 1310 (1912). DOI:10.1021/ja02211a004Suche in Google Scholar

25. Langmuir, I.: The dissociation of hydrogen into atoms. J. Am. Chem. Soc. 34(7), 860 (1912). DOI:10.1021/ja02208a003Suche in Google Scholar

26. Langmuir, I., Mackay, G.M.J.: The dissociation of hydrogen into atoms. Part I. Experimental. J. Am. Chem. Soc. 36(8), 1708 (1914). DOI:10.1021/ja02185a011Suche in Google Scholar

27. Langmuir, I.: The dissociation of hydrogen into atoms. III. The mechanism of the reaction. J. Am. Chem. Soc. 38(6), 1145 (1916). DOI:10.1021/ja02263a001Suche in Google Scholar

28. Whitby, R.L.D., Gun’ko, V.M., Korobeinyk, A., Busquets, R., Cundy, A.B., László, K., Skubiszewska-Zięba, J., Leboda, R., Tombácz, E., Toth, I.Y., Kovacs, K., Mikhalovsk, S.V.: Driving forces of conformational changes in single-layer graphene oxide. ACS Nano 6(5), 3967 (2012). DOI:10.1021/nn3002278Suche in Google Scholar PubMed PubMed Central

29. Badun, G.A., Chernysheva,M.G., Ksenofontov, A.L.: Increase in the specific radioactivity of tritium-labeled compounds obtained by tritium thermal activation method. Radiochim. Acta. 100, 401 (2012). DOI:10.1524/ract.2012.1926Suche in Google Scholar

30. Choppin, G.R., Liljenzin, J.-O., Rydberg, J.: Radiochemistry and Nuclear Chemistry, 3rd Edition, 2002, p. 240–282.Suche in Google Scholar

31. Hennrich, F., Krupke, R., Lebedkin, S., Arnold, K., Fischer, R., Resasco, D.E., Kappes M.M.: Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J. Phys. Chem. B. 109, 10567 (2005). DOI:10.1021/jp0441745Suche in Google Scholar PubMed

Received: 2015-9-21
Accepted: 2016-1-15
Published Online: 2016-6-8
Published in Print: 2016-8-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2015-2516/html?lang=de
Button zum nach oben scrollen