Behavior of Cs in Grimsel granodiorite: sorption on main minerals and crushed rock
-
Muuri Eveliina
, Ikonen Jussi
Abstract
In this study the sorption of cesium was investigated on four different minerals; quartz, plagioclase, potassium feldspar and biotite as well as granodiorite obtained from the Grimsel test site in Switzerland. The experiments were conducted in the presence of the weakly saline Grimsel groundwater simulant by determining the distribution coefficients using batch sorption experiments and PHREEQC-modelling across a large concentration range. In addition, the purity of the minerals was measured byXRDand the specific surface areas by BET method using krypton. The distribution coefficients of cesiumwere largest on biotite (0.304±0.005 m3/kg in 10-8 M). Furthermore, the sorption of cesiumon quartzwas found to be negligibly small in all investigated concentrations and the sorption of cesium on potassium feldspar and plagioclase showed similar behavior against a concentration isotherm with distribution coefficients of 0.0368±0.0004 m3/kg and 0.18±0.04 m3/kg in 10-8 M. Finally, cesium sorption behavior on crushed granodiorite followed the trend of one of its most abundant mineral, plagioclase with distribution coefficient values of 0.107±0.003 m3/kg in 10-8 M. At low concentrations (<1.0·10-6 M) cesiumwas sorbed on the frayed edge sites of biotite and once these sites are fully occupied cesium sorbs additionally to the Type II and Planar sites. As a consequence, the sorption of cesium on biotite is decreased at concentrations >1.0·10-6 M. Secondly cesium sorption on potassium feldspar and plagioclase showed similar non-linear behavior with varying concentration. The results were used to assist the interpretation of cesium diffusion process in the 2.5 year in-situ experiment carried out in the underground laboratory at Grimsel test site in Switzerland (2007–2009).
Acknowledgement
This work was supported by Finnish Research Program on Nuclear Waste Management KYT2014.
References
1. Witherspoon, P. A.: Introduction to second world wide review of geological problems in radioactive waste isolation, geological problems in radioactive waste isolation, second world wide review. Lawrence Berkeley Lab. 1996. Technical report. LBNL-38915.10.2172/469155Search in Google Scholar
2. Miller, B. and Marcos N.: Process report – FEPs and scenarios for a spent fuel repository at Olkiluoto. Posiva Oy. 2007. Posiva report. 2014.Search in Google Scholar
3. Poteri, A., Nordman, H., Pulkkanen, V-M. and Smith, P.: Radionuclide Transport in the Repository Near-Field and Far-Field. Posiva Oy. 2014. Posiva report. 2007-12.Search in Google Scholar
4. Neretnieks, I.: Diffusion in the rock matrix: an important factor in radionuclide retardation? J. Geophys. Res. 1980. 85(8). 4379–4397. DOI:10.1029/JB085iB08p04379Search in Google Scholar
5. Dai, Z., Wolfsberg, A., Lu, Z. and Reimus, P.: Upscaling matrix diffusion coefficients for heterogeneous fractured rocks. Geophys. Res. Lett. 2007. 34(7). LO7408. DOI:10.1029/2007GL029332Search in Google Scholar
6. Möri, A., Alexander, W. R., Geckeis, H., Hauser, W., Schäfer, T., Eikenberg, J. and Fiertz, T.: The colloid and radionuclide retardation experiment at the Grimsel test site: influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids Surf., A. 2003. 217(1–3). 33–47. DOI:10.1016/S0927-7757(02)00556-3Search in Google Scholar
7. Siitari-Kauppi, M. K., Hölttä, P., Pinnioja, S. and Lindberg, A.: Cesium sorption on tonalite and mica gneiss. Mater. Res. Soc. Symp. Proc. 1999. 556(1). 1099–1106. DOI:10.1557/PROC-556-1099Search in Google Scholar
8. Vilks, P., Cramer, J. J., Jensen, M., Miller, N. H., Miller, H. G. and Stanchell, F. W.: In situ diffusion experiment in granite: phase I. J. Contam. Hydrol., 2003. 61(1–4). 191. DOI:10.1016/S0169-7722(02)00135-3Search in Google Scholar
9. Voutilainen, M., Poteri, A., Helariutta, K., Siitari-Kauppi, M., Nilsson, K., Andersson, P., ByegÅrd, J., SkÅlberg, M., Kekäläinen, P., Timonen, J., Lindberg, A., Pitkänen, P., Kemppainen, K., Liimatainen, J., Hautojärvi, A., Koskinen, L.: In-situ experiments for investigating the retention properties of rock matrix in ONKALO. Olkiluoto, Finland. WM 2014 Conference Proceedings 40, 2014, 14258. DOI:10.13140/2.1.2870.5924Search in Google Scholar
10. Widestrand, H., ByegÅrd, J., Cvetkovic, V., Tullborg, E.-L., Winberg, A., Andersson, P., and Siitari-Kauppi, M.: Sorbing tracer experiments in a crystalline rock fracture at äspö (Sweden): 1. Experimental setup and microscale characterization of retention properties. Water Resour. Res. 2007. 43. W10413. DOI:10.1029/2006WR005277Search in Google Scholar
11. Widestrand, H., ByegÅrd, J., Nilsson, K., Höglund, S., Gustafsson, E., and Kronberg, M.: Long Term Sorption Diffusion Experiment (LTDE-SD): Performance of main in situ experiment and results from water phase measurements. SKB R-10-67, Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, Sweden 2010.Search in Google Scholar
12. Jokelainen, L., Meski, T., Lindberg, A., Soler, J. M., Siitari-Kauppi,M. K., Martin, A. and Eikenberg, J.: The determination of 134Csand 22Nadiffusion profiles in granodiorite using gamma spectroscopy. J. Radioanal. Nucl. Chem. 2013. 295(3). 2153–2161. DOI:10.1007/s10967-012-2268-ySearch in Google Scholar
13. Soler, J. M., Landa, J., Havlova, V., Tachi, Y., Ebina, T., Sardini, P., Siitari-Kauppi, M., Eikenberg, J. and Martin, A. J.: Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site. J. Contam. Hydrol. 2015. 179. 89–101.10.1016/j.jconhyd.2015.06.002Search in Google Scholar PubMed
14. Ikonen, J., Sardini, P., Jokelainen, L., Lindberg, A., Siitari-Kauppi,M., Martin, A. J., and Eikenberg, J.: The determination of tritiated water and iodine in situ diffusion profiles in Grimsel granodiorite. Submitted to publication 2015.Search in Google Scholar
15. Kuva, J., Voutilainen, M., Kekäläinen, P., Siitari-Kauppi, M., Timonen, J., Koskinen, L.: Gas Phase Measurements of Porosity, Diffusion Coefficient, and Permeability in Rock Samples from Olkiluoto Bedrock, Finland. Transp. Porous Med. 2015. 107. 187–204. DOI:10.1007/s11242-014-0432-2Search in Google Scholar
16. Tachi, Y., Ebina, T., Takeda, C., Saito, T., Takahashi, H., Ohuchi, Y., and Martin, A. J.: Matrix diffusion and sorption of Cs+, Na+, I-and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition. J. Contam. Hydrol. 2015. 179. 10–24. DOI:10.1016/j.jconhyd.2015.05.003Search in Google Scholar
17. Steefel, C. I., Carroll, S., Zhao, P. and Roberts, S.: Cesium migration in Hanford sediment: A multisite cation exchange model based on laboratory transport experiments. J. Contam. Hydrol. 2003. 67(1–4). 219–246. DOI:10.1016/S0169-7722(03)00033-0Search in Google Scholar
18. Mathurin, F. A., Drake, H., Tullborg, E.-L., Berger, T., Peltola, P., Kalinowski, B. E., and Åström, M. E.: High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock – Influence of groundwater origin and secondary minerals. Geochim. Cosmochim. Ac. 2014. 132. 187–213. DOI:10.1016/j.gca.2014.02.001Search in Google Scholar
19. Hakem, N. L.,Mahamid, I. A., Apps, J. A. andMoridis, G. J.: Sorption of cesium and strontium on Hanford soil. J. Radioanal. Nucl. Chem. 2000. 246(2). 275–278. DOI:10.1023/A:1006701902891Search in Google Scholar
20. de Koning, A., Konoplev, A. V. and Comans, R. N. J.: Measuring the specific caesium sorption capacity of soils, sediments and clay minerals. Appl. Geochem. 2007. 22(1). 219–229. DOI:10.1016/j.apgeochem.2006.07.013Search in Google Scholar
21. Papelis, C.: Cation and anion sorption on granite from the Project Shoal Test site, near Fallon, Nevada, USA. Advances in Environmental Research. 2001. 5(2). 151–166. DOI:10.1016/S1093-0191(00)00053-8Search in Google Scholar
22. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y. and Teng, S. P.: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 2009. 161(2–3). 854–861. DOI:10.1016/j.jhazmat.2008.04.044Search in Google Scholar PubMed
23. Fuller, A. J., Shaw, S., Peacock, C. L., Trivedi, D., Small, J. S., Abrahamsen, L. G. and Burke, I. T.: Ionic strenght and pH dependentmulti-site sorption of Cs onto a micaceous aquifer sediment. Appl. Geochem. 2014. 40(1). 32–42. DOI:10.1016/j.apgeochem.2013.10.017Search in Google Scholar
24. Kyllönen, J., Hakanen, M., Lindberg, A., Harjula, R., Vehkamäki., M. and Lehto, J.: Modeling of cesium sorption using cation exchange selectivity coefficients. Radiochim. Acta. 2014. 102(10). 919–929. DOI:10.1515/ract-2013-2180Search in Google Scholar
25. Bradbury, M. H. and Baeyens, B.: A generalised sorption model for the concentration dependent uptake of caesium by argillacesous rocks. J. Contam. Hydrol. 2000. Vol 42(2–4). 141–163. DOI:10.1016/s0169-7722(99)00094-7Search in Google Scholar
26. Hoehn, E., Eikenberg, J., Fierzb, T., Drostc, W. and Reichlmayrc, E.: The Grimsel Migration Experiment: field injection-withdrawal experiments in fractured rock with sorbing tracers. J. Contam. Hydrol. 1998. 34(1–2). 85–106. DOI:10.1016/S0169-7722(98)00083-7Search in Google Scholar
27. Brouwer, E., Baeyens, B., Maes, A. and Cremers, A.: Cesium and rubidium ion equilibria in illite clay. J. Phys. Chem. 1983. Vol 87(7). 1213–1219. DOI:10.1021/j100230a024Search in Google Scholar
28. Voutilainen et al.: Cs diffusion in heterogeneous rock matrix. To be submitted 2016.Search in Google Scholar
29. Kelokaski, M., Siitari-Kauppi, M., Kauppi, I., Hellmuth, K.-H., Möri, A., Biggin, C., Kickmaier,W., Inderbitzin, L. and Martin, A.: Pore Space Geometry Project Characterisation of Pore Space Geometry by 14C-MMA Impregnation. Nagra Technical Report 05-03 2010.Search in Google Scholar
30. Aksoyoglu, S., Bajo, C. and Mantovani, M.: Batch sorption experiments with iodine, bromine, strontium, sodium and cesium on Grimsel mylonite. Nagra Technical report 91-06 1991.Search in Google Scholar
31. Mäder, U. K., Fierz, T., Frieg, B., Eikenberg, J., Rüthi, M., Albinsson, Y., Möri, A., Ekberg, S. and Stille, P.: Interaction of hyperalkaline fluid with fractured rock: Field and laboratory experiments of the HPF project (Grimsel test site, Switzerland). J. Geochem. Explor. 2006. 90(1–2). 68–94.10.1016/j.gexplo.2005.09.006Search in Google Scholar
32. Schollenberger C.J. and Simon R.H.: Determination of exchange capacity and exhangeable bases in soil-ammonium acetate method. Soil. Sci. 1945. 59. 13–24.10.1097/00010694-194501000-00004Search in Google Scholar
33. Appelo, C. A.J and Postma, D.: Geochemistry, groundwater and pollution. A.A. Balkema Publishers. Amsterdam. 2005.10.1201/9781439833544Search in Google Scholar
34. Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976. A32(1). 751–767. DOI:10.1107/S0567739476001551Search in Google Scholar
35. Lehto, J. and Hou, X.: Chemistry and analysis of radionuclides: laboratory techniques and methodology. Wiley-VCH. Weinham, Germany. 2011. DOI:10.1016/j.gexplo.2005.09.006Search in Google Scholar
36. Shahwan, T. and Erten, H. N.: Thermodynamic parameters of Cs+sorption on natural clays. Journal of Radioanalytical and Nuclear Chemistry. 2002. 253(1). 115–120.10.1023/A:1015824819940Search in Google Scholar
37. Hellmuth, K-H., Klobes, P., Meyer, K., Röhl-Kuhn, B., Siitari-Kauppi, M., Hartikainen, J., Hartikainen, K. and Timonen, J.: Matrix retardation studies: size and structure of the accessable pore space in fresh and altered crystalline rock. Z. Geol. Wiss. 1995. 23(5). 691–706Search in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Cross sections for d-3H neutron interactions with samarium isotopes
- Decomposition studies of group 6 hexacarbonyl complexes. Part 2: Modelling of the decomposition process
- Recovery of Ra-223 from natural thorium irradiated by protons
- Synthesis of ordered mesoporous uranium dioxide by a nanocasting route
- Complexation of Bi3+, Ac3+, Y3+, Lu3+, La3+ and Eu3+ with benzo-diaza-crown ether with carboxylic pendant arms
- Magnesium ionophore II as an extraction agent for trivalent europium and americium
- Behavior of Cs in Grimsel granodiorite: sorption on main minerals and crushed rock
- Issues concerning the determination of solubility products of sparingly soluble crystalline solids: solubility of HfO2(cr)
- Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide
Articles in the same Issue
- Frontmatter
- Cross sections for d-3H neutron interactions with samarium isotopes
- Decomposition studies of group 6 hexacarbonyl complexes. Part 2: Modelling of the decomposition process
- Recovery of Ra-223 from natural thorium irradiated by protons
- Synthesis of ordered mesoporous uranium dioxide by a nanocasting route
- Complexation of Bi3+, Ac3+, Y3+, Lu3+, La3+ and Eu3+ with benzo-diaza-crown ether with carboxylic pendant arms
- Magnesium ionophore II as an extraction agent for trivalent europium and americium
- Behavior of Cs in Grimsel granodiorite: sorption on main minerals and crushed rock
- Issues concerning the determination of solubility products of sparingly soluble crystalline solids: solubility of HfO2(cr)
- Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide