Startseite Nanocellulose: from biosources to nanofiber and their applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanocellulose: from biosources to nanofiber and their applications

  • A. S. Norfarhana , R. A. Ilyas ORCID logo EMAIL logo , A. Nazrin , Salit Mohd Sapuan , R. M. O. Syafiq , P. S. Khoo , Abu Hassan Nordin ORCID logo , Abdoulhdi A. Borhana Omran , Dominic C. D. Midhun , H. S. N. Hawanis , Nasmi Herlina Sari , Melbi Mahardika , Mochamad Asrofi und Hairul Abral
Veröffentlicht/Copyright: 9. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanocellulose is a product of cellulose, a sustainable and plentiful resource. It’s distinctive nanoscale structure makes it a versatile, green and interesting material for a variety of applications. This article describes in detail the biosources of nanocellulose, the types and characteristics of nanocellulose, and the techniques used to produce nanocellulose fibers. The mechanical properties and morphologies of nanocellulose fibers are addressed in depth, along with their prospective applications in sectors, including paper packaging, building materials, composites, biomedicine, energy storage and filtration. In addition, the current state of nanocellulose research, including the opportunities in the field, as well as the future prospects of nanocellulose as a viable and sustainable material for a vast array of applications, are discussed.


Corresponding author: R. A. Ilyas, Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia; and Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia, E-mail:

Funding source: The impact of Malaysian bamboos’ chemical and fiber characteristics on their pulp and paper properties

Award Identifier / Grant number: PY/2022/02318— Q.J130000.3851.21H99

Funding source: Research Excellence Consortium

Award Identifier / Grant number: JPT (BPKI) 1000/016/018/25 (57)

Acknowledgement

The research has been carried out under the programme, Research Excellence Consortium (JPT (BPKI) 1000/016/018/25 (57)), provided by the Ministry of Higher Education Malaysia (MOHE).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like express gratitude for the financial support received from the Universiti Teknologi Malaysia for the project “The impact of Malaysian bamboos’ chemical and fiber characteristics on their pulp and paper properties”, grant number PY/2022/02318— Q.J130000.3851.21H99.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sabaruddin, FA, Paridah, MT, Sapuan, SM, Ilyas, RA, Lee, SH, Khalina, A, et al.. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers 2020;13:116.10.3390/polym13010116Suche in Google Scholar PubMed PubMed Central

2. Suriani, MJ, Ilyas, RA, Zuhri, MYM, Khalina, A, Sultan, MTH, Sapuan, SM, et al.. Critical review of natural fiber reinforced hybrid composites: processing, properties, applications and cost. Polymers 2021;13:3514.10.3390/polym13203514Suche in Google Scholar PubMed PubMed Central

3. Azman, MA, Asyraf, MRM, Khalina, A, Petru, M, Ruzaidi, CM, Sapuan, SM, et al.. Natural fiber reinforced composite material for product design: a short review. Polymers 2021;13:1917.10.3390/polym13121917Suche in Google Scholar PubMed PubMed Central

4. Ishak, MR, Sapuan, SM, Leman, Z, Rahman, MZA, Anwar, UMK, Siregar, JP. Sugar palm (arenga pinnata): its fibres, polymers and composites. Carbohydr Polym 2013;91:699–710. https://doi.org/10.1016/j.carbpol.2012.07.073.Suche in Google Scholar PubMed

5. Sanyang, ML, Sapuan, SM, Jawaid, M, Ishak, MR, Sahari, J. Recent developments in sugar palm (arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 2016;54:533–49. https://doi.org/10.1016/j.rser.2015.10.037.Suche in Google Scholar

6. Sahari, J, Sapuan, SM, Ismarrubie, ZN, Rahman, MZ. Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres Text East Eur 2012;91:21–4.Suche in Google Scholar

7. Norizan, MN, Abdan, K, Ilyas, RA, Biofibers, SP. Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery 2020;65:34–43.10.14314/polimery.2020.2.5Suche in Google Scholar

8. Koronis, G, Silva, A, Fontul, M. Green composites: a review of adequate materials for automotive applications. Compos B Eng 2013;44:120–7. https://doi.org/10.1016/j.compositesb.2012.07.004.Suche in Google Scholar

9. Burgueño, R, Quagliata, MJ, Mohanty, AK, Metha, G, Drzal, LT, Misra, M. Hybrid biofiber-based composites for structural cellular plates. Composites, Part A 2005;36:581–93.10.1016/j.compositesa.2004.08.004Suche in Google Scholar

10. Nurazzi, NM, Sabaruddin, FA, Harussani, MM, Kamarudin, SH, Rayung, M, Asyraf, MRM, et al.. Mechanical performance and applications of CNTs reinforced polymer composites—a review. Nanomaterials 2021;11:2186.10.3390/nano11092186Suche in Google Scholar PubMed PubMed Central

11. Abitbol, T, Rivkin, A, Cao, Y, Nevo, Y, Abraham, E, Ben-Shalom, T, et al.. Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 2016;39:76–88.10.1016/j.copbio.2016.01.002Suche in Google Scholar PubMed

12. Norfarhana, AS, Ilyas, RA, Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr Polym 2022;291:119563.10.1016/j.carbpol.2022.119563Suche in Google Scholar PubMed

13. Brinchi, L, Cotana, F, Fortunati, E, Kenny, JM. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 2013;94:154–69. https://doi.org/10.1016/j.carbpol.2013.01.033.Suche in Google Scholar PubMed

14. Klemm, D, Kramer, F, Moritz, S, Lindström, T, Ankerfors, M, Gray, D, et al.. Nanocelluloses: a new family of nature-based materials. Angew Chem, Int Ed 2011;50:5438–66.10.1002/anie.201001273Suche in Google Scholar PubMed

15. Reddy, MM, Vivekanandhan, S, Misra, M, Bhatia, SK, Mohanty, AK. Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 2013;38:1653–89. https://doi.org/10.1016/j.progpolymsci.2013.05.006.Suche in Google Scholar

16. Beck-Candanedo, S, Roman, M, Gray, DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005;6:1048–54.10.1021/bm049300pSuche in Google Scholar PubMed

17. Jonoobi, M, Oladi, R, Davoudpour, Y, Oksman, K, Dufresne, A, Hamzeh, Y, et al.. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 2015;22:935–69. https://doi.org/10.1007/s10570-015-0551-0.Suche in Google Scholar

18. Xiang, Q, Lee, YY, Pettersson, PO, Torget, RW. Heterogeneous aspects of acid hydrolysis of α-cellulose. In: Biotechnology for fuels and chemicals. Totowa, NJ: Humana Press; 2003:505–14 pp.10.1007/978-1-4612-0057-4_42Suche in Google Scholar

19. Silvério, HA, Neto, WPF, Dantas, NO, Pasquini, D. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 2013;44:427–36. https://doi.org/10.1016/j.indcrop.2012.10.014.Suche in Google Scholar

20. Dalmas, F, Cavaille, JY, Gauthier, C, Chazeau, L, Dendievel, R. Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 2007;67:829–39.10.1016/j.compscitech.2006.01.030Suche in Google Scholar

21. Majeed, K, Jawaid, M, Hassan, A, Abu Bakar, A, Abdul Khalil, HPS, Salema, AA, et al.. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 2013;46:391–410. https://doi.org/10.1016/j.matdes.2012.10.044.Suche in Google Scholar

22. Islam, MT, Alam, MM, Zoccola, M. Review on modification of nanocellulose for application in composites. Int J Innov Res Technol Sci Eng 2013;2:5444–51.Suche in Google Scholar

23. Savadekar, NR, Mhaske, ST. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 2012;89:146–51.10.1016/j.carbpol.2012.02.063Suche in Google Scholar PubMed

24. Siqueira, G, Bras, J, Dufresne, A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2010;2:728–65.10.3390/polym2040728Suche in Google Scholar

25. Follain, N, Belbekhouche, S, Bras, J, Siqueira, G, Marais, S, Dufresne, A. Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 2013;427:218–29.10.1016/j.memsci.2012.09.048Suche in Google Scholar

26. Moon, RJ, Martini, A, Nairn, J, Simonsen, J, Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40:3941.10.1039/c0cs00108bSuche in Google Scholar PubMed

27. Khalil, HPSA, Bhat, AH, Yusra, AFI. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 2012;87:963–79. https://doi.org/10.1016/j.carbpol.2011.08.078.Suche in Google Scholar

28. Johnson, RK, Zink-Sharp, A, Renneckar, SH, Glasser, WG. A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 2009;16:227–38. https://doi.org/10.1007/s10570-008-9269-6.Suche in Google Scholar

29. Asyraf, MRM, Ishak, MR, Syamsir, A, Nurazzi, NM, Sabaruddin, FA, Shazleen, SS, et al.. Mechanical properties of oil palm fibre-reinforced polymer composites: a review. J Mater Res Technol 2022;17:33–65.10.1016/j.jmrt.2021.12.122Suche in Google Scholar

30. Sharma, S, Sudhakara, P, Omran, AAB, Singh, J, Ilyas, RA. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers 2021;13:2898.10.3390/polym13172898Suche in Google Scholar PubMed PubMed Central

31. Chen, Y, Liu, C, Chang, PR, Cao, X, Anderson, DP. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 2009;76:607–15.10.1016/j.carbpol.2008.11.030Suche in Google Scholar

32. Diyana, ZN, Jumaidin, R, Selamat, MZ, Ghazali, I, Julmohammad, N, Huda, N, et al.. Physical properties of thermoplastic starch derived from natural resources and its blends: a review. Polymers 2021;13:1–20.10.3390/polym13091396Suche in Google Scholar PubMed PubMed Central

33. Ilyas, RA, Sapuan, SM, Ishak, MR, Zainudin, ES, Atikah, MSN. Nanocellulose reinforced starch polymer composites: a review of preparation, properties and application. In: Proceeding: 5th international conference on applied sciences and engineering (ICASEA, 2018), Capthorne Hotel. Cameron Highlands, Malaysia: Global Academic Excellence (M) SDN BHD; 2018:325–41 pp.Suche in Google Scholar

34. Ilyas, RA, Sapuan, SM, Ishak, MR, Zainudin, ES. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 2018;202:186–202.10.1016/j.carbpol.2018.09.002Suche in Google Scholar PubMed

35. Abral, H, Dalimunthe, MH, Hartono, J, Efendi, RP, Asrofi, M, Sugiarti, E, et al.. Characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch/Staerke 2018;70:1–8.10.1002/star.201700287Suche in Google Scholar

36. Tarique, J, Sapuan, SM, Khalina, A, Sherwani, SFK, Yusuf, J, Ilyas, RA. Recent developments in sustainable arrowroot (maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: a review. J Mater Res Technol 2021;13:1191–219.10.1016/j.jmrt.2021.05.047Suche in Google Scholar

37. Khan, A, Khan, RA, Salmieri, S, Tien, CL, Riedl, B, Bouchard, J, et al.. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 2012;90:1601–8. https://doi.org/10.1016/j.carbpol.2012.07.037.Suche in Google Scholar PubMed

38. Babaee, M, Jonoobi, M, Hamzeh, Y, Ashori, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 2015;132:1–8. https://doi.org/10.1016/j.carbpol.2015.06.043.Suche in Google Scholar PubMed

39. Hietala, M, Mathew, AP, Oksman, K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 2013;49:950–6. https://doi.org/10.1016/j.eurpolymj.2012.10.016.Suche in Google Scholar

40. Karimi, S, Paridah, MT, Dufresne, A, Karimi, A, Abdulkhani, A. A comparative study on characteristics of nanocellulose reinforced thermoplastic starch biofilms prepared with different techniques. Nord Pulp Pap Res J 2014;29:41–5.10.3183/npprj-2014-29-01-p041-045Suche in Google Scholar

41. Azeredo, HMC, Mattoso, LHC, Wood, D, Williams, TG, Avena-Bustillos, RJ, McHugh, TH. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 2009;74:31–5.10.1111/j.1750-3841.2009.01186.xSuche in Google Scholar PubMed

42. Kaushik, A, Singh, M, Verma, G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 2010;82:337–45. https://doi.org/10.1016/j.carbpol.2010.04.063.Suche in Google Scholar

43. Nasri-Nasrabadi, B, Behzad, T, Bagheri, R. Preparation and characterization of cellulose nanofiber reinforced thermoplastic starch composites. Fibers Polym 2014;15:347–54.10.1007/s12221-014-0347-0Suche in Google Scholar

44. Llanos, JHR, Tadini, CC. Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 2017;107:371–82.10.1016/j.ijbiomac.2017.09.001Suche in Google Scholar PubMed

45. Cao, X, Chen, Y, Chang, PR, Stumborg, M, Huneault, MA. Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 2008;109:3804–10. https://doi.org/10.1002/app.28418.Suche in Google Scholar

46. Cao, X, Chen, Y, Chang, PR, Muir, AD, Falk, G. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2008;2:502–10.10.3144/expresspolymlett.2008.60Suche in Google Scholar

47. Liu, D, Zhong, T, Chang, PR, Li, K, Wu, Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 2010;101:2529–36. https://doi.org/10.1016/j.biortech.2009.11.058.Suche in Google Scholar PubMed

48. Anglès, MN, Dufresne, A. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 2001;34:2921–31. https://doi.org/10.1021/ma001555h.Suche in Google Scholar

49. Angellier, H, Molina-Boisseau, S, Dole, P, Dufresne, A. Thermoplastic Starch−Waxy maize starch nanocrystals nanocomposites. Biomacromolecules 2006;7:531–9. https://doi.org/10.1021/bm050797s.Suche in Google Scholar PubMed

50. Mathew, AP, Thielemans, W, Dufresne, A. Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 2008;109:4065–74. https://doi.org/10.1002/app.28623.Suche in Google Scholar

51. Lu, Y, Weng, L, Cao, X. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 2005;5:1101–7. https://doi.org/10.1002/mabi.200500094.Suche in Google Scholar PubMed

52. Yang, S, Tang, Y, Wang, J, Kong, F, Zhang, J. Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind Eng Chem Res 2014;53:13980–8. https://doi.org/10.1021/ie502125s.Suche in Google Scholar

53. Lu, Y, Weng, L, Cao, X. Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 2006;63:198–204.10.1016/j.carbpol.2005.08.027Suche in Google Scholar

54. Kvien, I, Sugiyama, J, Votrubec, M, Oksman, K. Characterization of starch based nanocomposites. J Mater Sci 2007;42:8163–71. https://doi.org/10.1007/s10853-007-1699-2.Suche in Google Scholar

55. Chang, PR, Jian, R, Zheng, P, Yu, J, Ma, X. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 2010;79:301–5. https://doi.org/10.1016/j.carbpol.2009.08.007.Suche in Google Scholar

56. Noshirvani, N, Ghanbarzadeh, B, Fasihi, H, Almasi, H. Starch-PVA nanocomposite film incorporated with cellulose nanocrystals and MMT: a comparative study. Int J Food Eng 2016;12:37–48.10.1515/ijfe-2015-0145Suche in Google Scholar

57. Chen, D, Lawton, D, Thompson, MR, Liu, Q. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 2012;90:709–16.10.1016/j.carbpol.2012.06.002Suche in Google Scholar PubMed

58. Slavutsky, AM, Bertuzzi, MA. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 2014;110:53–61. https://doi.org/10.1016/j.carbpol.2014.03.049.Suche in Google Scholar PubMed

59. Dufresne, A. Nanocellulose: a new ageless bionanomaterial. Mater Today 2013;16:220–7. https://doi.org/10.1016/j.mattod.2013.06.004.Suche in Google Scholar

60. Rashid, ESA, Gul, A, Yehya, WAH, Julkapli, NM. Physico-chemical characteristics of nanocellulose at the variation of catalytic hydrolysis process. Heliyon 2021;7:e07267.10.1016/j.heliyon.2021.e07267Suche in Google Scholar PubMed PubMed Central

61. Kadier, A, Ilyas, RA, Huzaifah, MRM, Harihastuti, N, Sapuan, SM, Harussani, MM, et al.. Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: mechanism, advances, and future perspectives. Polymers 2021;13:1–51.10.3390/polym13193365Suche in Google Scholar PubMed PubMed Central

62. Abral, H, Ariksa, J, Mahardika, M, Handayani, D, Aminah, I, Sandrawati, N, et al.. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids 2020;98:105266. https://doi.org/10.1016/j.foodhyd.2019.105266.Suche in Google Scholar

63. Ilyas, RA, Sapuan, SM, Ibrahim, R, Abral, H, Ishak, MR, Zainudin, ES, et al.. Sugar palm (arenga pinnata (wurmb.) merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. J Mater Res Technol 2019;8:2753–66.10.1016/j.jmrt.2019.04.011Suche in Google Scholar

64. Ilyas, RA, Sapuan, SM, Atiqah, A, Ibrahim, R, Abral, H, Ishak, MR, et al.. Sugar palm (arenga pinnata [wurmb.] merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: water barrier properties. Polym Compos 2020;41:459–67.10.1002/pc.25379Suche in Google Scholar

65. Ilyas, RA, Sapuan, SM, Ibrahim, R, Abral, H, Ishak, MR, Zainudin, ES, et al.. Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres. J Biobased Mater Bioenergy 2020;14:234–48.10.1166/jbmb.2020.1951Suche in Google Scholar

66. Nazrin, A, Sapuan, SM, Zuhri, MYM, Ilyas, RA, Syafiq, R, Sherwani, SFK. Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Front Chem 2020;8:1–12. https://doi.org/10.3389/fchem.2020.00213/full.Suche in Google Scholar

67. Nazrin, A, Sapuan, SM, Zuhri, MYM, Tawakkal, ISMA, Ilyas, RA. Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/Poly(Lactic acid) (PLA) blend bionanocomposites. Nanotechnol Rev 2021;10:431–42. https://doi.org/10.1515/ntrev-2021-0033/html.Suche in Google Scholar

68. Hisseine, OA, Wilson, W, Sorelli, L, Tolnai, B, Tagnit-Hamou, A. Nanocellulose for improved concrete performance: a macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Constr Build Mater 2019;206:84–96.10.1016/j.conbuildmat.2019.02.042Suche in Google Scholar

69. Omran, AAB, Mohammed, AABA, Sapuan, SM, Ilyas, RA, Asyraf, MRM, Koloor, SSR, et al.. Micro- and nanocellulose in polymer composite materials: a review. Polymers 2021;13:231.10.3390/polym13020231Suche in Google Scholar PubMed PubMed Central

70. Khalil, HPSA, Adnan, AS, Yahya, EB, Olaiya, NG, Safrida, S, Hossain, MS, et al.. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 2020;12:1–26.10.3390/polym12081759Suche in Google Scholar PubMed PubMed Central

71. Hossain, AS, Uddin, MM, Veettil, VN, Fawzo, M. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass an innovative biodegradable plant biomaterial. Data Brief 2018;17:162–8.10.1016/j.dib.2017.12.046Suche in Google Scholar PubMed PubMed Central

72. Jorfi, M, Foster, EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 2015;132:1–19.10.1002/app.41719Suche in Google Scholar

73. Lin, N, Dufresne, A. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 2014;59:302–25.10.1016/j.eurpolymj.2014.07.025Suche in Google Scholar

74. Tayeb, AH, Amini, E, Ghasemi, S, Tajvidi, M. Cellulose nanomaterials — binding properties and applications: a review. Molecules 2018;23:1–24.10.3390/molecules23102684Suche in Google Scholar PubMed PubMed Central

75. Chen, W, Yu, H, Lee, SY, Wei, T, Li, J, Fan, Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 2018;47:2837–72. https://doi.org/10.1039/C7CS00790F.Suche in Google Scholar PubMed

76. Erlandsson, J, Durán, VL, Granberg, H, Sandberg, M, Larsson, PA, Wågberg, L. Macro- and mesoporous nanocellulose beads for use in energy storage devices. Appl Mater Today 2016;5:246–54. https://doi.org/10.1016/j.apmt.2016.09.008.Suche in Google Scholar

77. Guo, M, Xu, P, Lv, J, Gong, C, Zhang, Z, Li, C. Engineering nanocellulose/graphene hybrid aerogel for form-stable composite phase change materials with high phase change enthalpy for energy storage. Diamond Relat Mater 2022;127:109131.10.1016/j.diamond.2022.109131Suche in Google Scholar

78. Li, Z, Liu, J, Jiang, K, Thundat, T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 2016;25:161–9.10.1016/j.nanoen.2016.04.036Suche in Google Scholar

79. Lv, P, Lu, X, Wang, L, Feng, W. Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage. Adv Funct Mater 2021;31:2104991. https://doi.org/10.1002/adfm.202104991.Suche in Google Scholar

80. Shaghaleh, H, Xu, X, Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv 2018;8:825–42.10.1039/C7RA11157FSuche in Google Scholar

81. Bai, L, Wu, H, Ding, J, Ding, A, Zhang, X, Ren, N, et al.. Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling. Chem Eng J 2020;382:122919.10.1016/j.cej.2019.122919Suche in Google Scholar

82. Cheng, R, Kang, M, Zhuang, S, Shi, L, Zheng, X, Wang, J. Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J Hazard Mater 2019;364:645–53.10.1016/j.jhazmat.2018.10.083Suche in Google Scholar PubMed

83. Huang, Y, Yang, P, Yang, F, Chang, C. Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J Membr Sci 2021;635:119537.10.1016/j.memsci.2021.119537Suche in Google Scholar

84. Karim, Z, Mathew, AP, Grahn, M, Mouzon, J, Oksman, K. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 2014;112:668–76.10.1016/j.carbpol.2014.06.048Suche in Google Scholar PubMed

Received: 2023-02-10
Accepted: 2023-03-30
Published Online: 2023-05-09

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0008/html
Button zum nach oben scrollen