Home Araucaria Araucana thermoplastic starch nanocomposite films reinforced with nanocellulose
Article
Licensed
Unlicensed Requires Authentication

Araucaria Araucana thermoplastic starch nanocomposite films reinforced with nanocellulose

  • A. Nazrin , A. S. Norfarhana , R. A. Ilyas ORCID logo EMAIL logo , S.M. Sapuan EMAIL logo , A. Khalina , R. M. O. Syafiq , M.R.M. Huzaifah , Ashraf Azmi , P. S. Khoo , Abu Hassan Nordin ORCID logo , H. S. N. Hawanis and S. A. Hassan
Published/Copyright: May 9, 2023
Become an author with De Gruyter Brill

Abstract

Araucaria Araucana starch is a raw material with proven potential in obtaining biodegradable polymers. Plasticization improves the flexibility characteristics of starch-based films, however, they still tend to have low tensile strength and high hydrophilicity. The addition of nanocellulose is a technique to improve these characteristics. In this paper, the effects of adding different sources and concentrations of nanocellulose (NC) on the properties of thermoplastic Araucaria Araucana films are addressed. One can highlight, the main effects are the increase of tensile strength and transparency of the films along with the reduction of water vapor permeability and water solubility. Further studies involving the reinforcement of Araucaria Araucana starch and nanocellulose should be conducted to overcome the lack of information.


Corresponding authors: R. A. Ilyas, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; and Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia, E-mail: ; and Salit Mohd Sapuan, Advanced Engineering Materials and Composites Research Center (AEMC), Universiti Putra Malaysia, Faculty of Engineering, 43400 Seri Kembangan, Selangor, Malaysia, E-mail:

Award Identifier / Grant number: PY/2022/02318†Q.J130000.3851.21H99

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like express gratitude for the financial support received from the Universiti Teknologi Malaysia for the project “The impact of Malaysian bamboos’ chemical and fibre char-acteristics on their pulp and paper properties”, grant number PY/2022/02318—Q.J130000.3851.21H99. The research has been carried out under the programme, Research Excel-lence Consortium (JPT (BPKI) 1000/016/018/25 (57)), provided by the Ministry of Higher Educa-tion Malaysia (MOHE).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kurtoğlu, S, Tan, N, Meriçli, A, Miski, M. Biological activities and chemical constituents of Ferula anatolica Boiss. Planta Med 2013;79:1–25. https://doi.org/10.1055/s-0033-1352149.Search in Google Scholar

2. Henríquez, C, Escobar, B, Figuerola, F, Chiffelle, I, Speisky, H, Estévez, AM. Characterization of piñon seed (Araucaria araucana (Mol) K. Koch) and the isolated starch from the seed. Food Chem 2008;107:592–601. https://doi.org/10.1016/j.foodchem.2007.08.040.Search in Google Scholar

3. Durán, A, Reyes-De-corcuera, J, Garay, G, Valencia, P, Urtubia, A. Development of an araucaria araucana beer-like beverage: process and product. Fermentation 2021;7:1–13. https://doi.org/10.3390/fermentation7030170.Search in Google Scholar

4. Conforti, PA, Lupano, CE. Selected properties of Araucaria angustifolia and Araucaria araucana seed protein. Int J Food Prop 2011;14:84–91. https://doi.org/10.1080/10942910903131431.Search in Google Scholar

5. Gallia, MC, Bachmeier, E, Ferrari, A, Queralt, I, Mazzeo, MA, Bongiovanni, GA. Pehuén (Araucaria araucana) seed residues are a valuable source of natural antioxidants with nutraceutical, chemoprotective and metal corrosion-inhibiting properties. Bioorg Chem 2020;104:104175. https://doi.org/10.1016/j.bioorg.2020.104175.Search in Google Scholar PubMed

6. Castaño, J, Rodríguez-Llamazares, S, Bouza, R, Franco, CML. Chemical composition and thermal properties of Chilean Araucaria araucana starch. Starch/Staerke 2016;68:100–5. https://doi.org/10.1002/star.201500148.Search in Google Scholar

7. Castaño, J, Bouza, R, Rodríguez-Llamazares, S, Carrasco, C, Vinicius, RVB. Processing and characterization of starch-based materials from pehuen seeds (Araucaria araucana (Mol) K. Koch). Carbohydr Polym 2012;88:299–307. https://doi.org/10.1016/j.carbpol.2011.12.008.Search in Google Scholar

8. Conforti, PA, Lupano, CE. Starch characterisation of Araucaria angustifolia and Araucaria araucana seeds. Starch/Staerke 2007;59:284–9. https://doi.org/10.1002/star.200600606.Search in Google Scholar

9. Suriani, MJ, Ilyas, RA, Zuhri, MYM, Khalina, A, Sultan, MTH, Sapuan, SM, et al.. Critical review of natural fiber reinforced hybrid composites: processing, properties, applications and cost. Polymers 2021;13:3514. https://doi.org/10.3390/polym13203514.Search in Google Scholar PubMed PubMed Central

10. Chan, JX, Wong, JF, Petrů, M, Hassan, A, Nirmal, U, Othman, N, et al.. Effect of nanofillers on Tribological properties of polymer nanocomposites: a review on recent development. Polymers 2021;13:2867. https://doi.org/10.3390/polym13172867.Search in Google Scholar PubMed PubMed Central

11. Sharma, S, Sudhakara, P, Omran, AAB, Singh, J, Ilyas, RA. Recent Trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers 2021;13:2898. https://doi.org/10.3390/polym13172898.Search in Google Scholar PubMed PubMed Central

12. Nurazzi, NM, Sabaruddin, FA, Harussani, MM, Kamarudin, SH, Rayung, M, Asyraf, MRM, et al.. Mechanical performance and applications of CNTs reinforced polymer composites—a review. Nanomaterials 2021;11:2186. https://doi.org/10.3390/nano11092186.Search in Google Scholar PubMed PubMed Central

13. Sabaruddin, FA, Paridah, MT, Sapuan, SM, Ilyas, RA, Lee, SH, Abdan, K, et al.. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers 2020;13:116. https://doi.org/10.3390/polym13010116.Search in Google Scholar PubMed PubMed Central

14. Mohammed, AABA, Hasan, Z, Omran, AAB, Elfaghi, AM, Ali, YH, Ilyas, RA, et al.. Effect of sugar palm fibers on the properties of blended wheat starch/polyvinyl alcohol (PVA) -based biocomposite films. J Mater Res Technol 2023;24:1043–55. https://doi.org/10.1016/j.jmrt.2023.02.027.Search in Google Scholar

15. Nurazzi, NM, Khalina, A, Chandrasekar, M, Aisyah, HA, Rafiqah, SA, Ilyas, RA, et al.. Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery 2020;65:115–24. https://doi.org/10.14314/polimery.2020.2.5.Search in Google Scholar

16. Asyraf, MRM, Ishak, MR, Syamsir, A, Nurazzi, NM, Sabaruddin, FA, Shazleen, SS, et al.. Mechanical properties of oil palm fibre-reinforced polymer composites: a review. J Mater Res Technol 2022;17:33–65. https://doi.org/10.1016/j.jmrt.2021.12.122.Search in Google Scholar

17. Azman, MA, Asyraf, MRM, Khalina, A, Petrů, M, Ruzaidi, CM, Sapuan, SM, et al.. Natural fiber reinforced composite material for product design: a short review. Polymers 2021;13:1917. https://doi.org/10.3390/polym13121917.Search in Google Scholar PubMed PubMed Central

18. Castaño, J, Rodríguez-Llamazares, S, Carrasco, C, Bouza, R. Physical, chemical and mechanical properties of pehuen cellulosic husk and its pehuen-starch based composites. Carbohydr Polym 2012;90:1550–6. https://doi.org/10.1016/j.carbpol.2012.07.029.10.1016/j.carbpol.2012.07.029Search in Google Scholar PubMed

19. Barros, S de S, Pessoa, WAGJr., Júnior, AC, Borges, ZV, Poffo, CM, Regis, DM, et al.. Value aggregation of pine (Araucaria angustifolia) nuts agro-industrial waste by cellulose extraction. Res Soc Dev 2021;10: e270101018836. https://doi.org/10.33448/rsd-v10i10.18836.Search in Google Scholar

20. Trache, D, Hussin, MH, Hui Chuin, CT, Sabar, S, Fazita, MRN, Taiwo, OFA, et al.. Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 2016;93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056.Search in Google Scholar PubMed

21. Ventura-Cruz, S, Tecante, A. Nanocellulose and microcrystalline cellulose from agricultural waste: review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloids 2021;118:106771. https://doi.org/10.1016/j.foodhyd.2021.106771.Search in Google Scholar

22. Haafiz, MKM, Eichhorn, SJ, Hassan, A, Jawaid, M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 2013;93:628–34. https://doi.org/10.1016/j.carbpol.2013.01.035.Search in Google Scholar PubMed

23. Kale, RD, Bansal, PS, Gorade, VG. Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose. J Polym Environ 2018;26:355–64. https://doi.org/10.1007/s10924-017-0936-2.Search in Google Scholar

24. Achor, M, Oyeniyi, YJ, Yahaya, A. Extraction and characterization of microcrystalline cellulose obtained from the back of the fruit of Lageriana siceraria (water gourd). J Appl Pharmaceut Sci 2014;4:57–60. https://doi.org/10.7324/JAPS.2014.40109.Search in Google Scholar

25. Shanmugam, N, Nagarkar, RD, Khurade, M. Microcrystalline cellulose powder from banana pseudostem fibres using biochemical route. Indian J Nat Prod Resour 2015;6:42–50.Search in Google Scholar

26. Jahan, MS, Saeed, A, He, Z, Ni, Y. Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 2011;18:451–9. https://doi.org/10.1007/s10570-010-9481-z.Search in Google Scholar

27. Okwonna, O. The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper. Carbohydr Polym 2013;98:721–5. https://doi.org/10.1016/j.carbpol.2013.06.039.Search in Google Scholar PubMed

28. Kalita, RD, Nath, Y, Ochubiojo, ME, Buragohain, AK. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids Surf B Biointerfaces 2013;108:85–9. https://doi.org/10.1016/j.colsurfb.2013.02.016.Search in Google Scholar PubMed

29. Azubuike, CP, Okhamafe, AO. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Agriculture J Recycl Organic Waste Agriculture 2012;1:1–7.10.1186/2251-7715-1-9Search in Google Scholar

30. Chauhan, YP, Sapkal, RS, Sapkal, VS, Zamre, GS. Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). Int J Chem Sci 2009;7:681–8.Search in Google Scholar

31. Sun, X, Lu, C, Liu, Y, Zhang, W, Zhang, X. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr Polym 2014;101:642–9. https://doi.org/10.1016/j.carbpol.2013.09.088.Search in Google Scholar PubMed

32. El-Sakhawy, M, Hassan, ML. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 2007;67:1–10. https://doi.org/10.1016/j.carbpol.2006.04.009.Search in Google Scholar

33. Ohwoavworhua, FO, Kunle, OO, Ofoefule, SI. Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant. Afri J Pharm Res Dev 2004;1:1–6.Search in Google Scholar

34. Trache, D, Tarchoun, AF, Derradji, M, Hamidon, TS, Masruchin, N, Brosse, N, et al.. Nanocellulose: from fundamentals to advanced applications. Front Chem 2020;8:392. https://doi.org/10.3389/fchem.2020.00392.Search in Google Scholar PubMed PubMed Central

35. Phanthong, P, Reubroycharoen, P, Hao, X, Xu, G, Abudula, A, Guan, G. Nanocellulose: extraction and application. Carbon Resour Convers 2018;1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004.Search in Google Scholar

36. Autet, AC. Production of high value-added nanocellulose from agriculture biomass waste. Barcelona, Spain: Universitat de Barcelona; 2022.Search in Google Scholar

37. Amin, FR, Khalid, H, Zhang, H, Rahman, S, Zhang, R, Liu, G, et al.. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. Amb Express 2017;7:72. https://doi.org/10.1186/s13568-017-0375-4.Search in Google Scholar PubMed PubMed Central

38. Anukam, A, Berghel, J. Biomass pretreatment and characterization: a review. In: Basso, TP, Basso, TO, Basso, LC, editors. Biotechnological applications of biomass, 1st ed. IntechOpen; 2020:19–36 pp.10.5772/intechopen.93607Search in Google Scholar

39. Shrestha, S, Kognou, ALM, Zhang, J, Qin, W. Different facets of lignocellulosic biomass including pectin and its perspectives. Waste and Biomass Valorization 2021;12:4805–23. https://doi.org/10.1007/s12649-020-01305-w.Search in Google Scholar

40. Gupta, GK, Shukla, P. Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front Chem 2020;8:1–13. https://doi.org/10.3389/fchem.2020.601256.Search in Google Scholar PubMed PubMed Central

41. Babaee, M, Jonoobi, M, Hamzeh, Y, Ashori, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 2015;132:1–8. https://doi.org/10.1016/j.carbpol.2015.06.043.Search in Google Scholar PubMed

42. Diyana, ZN, Jumaidin, R, Selamat, MZ, Ghazali, I, Julmohammad, N, Huda, N, et al.. Physical properties of thermoplastic starch derived from natural resources and its blends: a review. Polymers 2021;13:1–20. https://doi.org/10.3390/polym13091396.10.3390/polym13091396Search in Google Scholar PubMed PubMed Central

43. Tarique, J, Sapuan, SM, Khalina, A, Sherwani, SFK, Yusuf, J, Ilyas, RA. Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: a review. J Mater Res Technol 2021;13:1191–219. https://doi.org/10.1016/j.jmrt.2021.05.047.Search in Google Scholar

44. Asrofi, M, Sapuan, SM, Ilyas, RA, Ramesh, M. Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: effect of time duration of ultrasonication (bath-type). Mater Today Proc 2020;46:1626–30. https://doi.org/10.1016/j.matpr.2020.07.254.Search in Google Scholar

45. Sahari, J, Sapuan, SM, Zainudin, ES, Maleque, MA. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydr Polym 2013;92:1711–6. https://doi.org/10.1016/j.carbpol.2012.11.031.10.1016/j.carbpol.2012.11.031Search in Google Scholar PubMed

46. Daudt, RM, Sinrod, AJG, Avena-Bustillos, RJ, Külkamp-Guerreiro, IC, Marczak, LDF, McHugh, TH. Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocolloids 2017;71:60–7. https://doi.org/10.1016/j.foodhyd.2017.04.033.Search in Google Scholar

47. Mishra, A, Malhotra, AV. Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem 2009;19:8528–36. https://doi.org/10.1039/b911150f.Search in Google Scholar

48. Dias, AB, Müller, CMO, Larotonda, FDS, Laurindo, JB. Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. LWT – Food Sci Technol 2011;44:535–42. https://doi.org/10.1016/j.lwt.2010.07.006.Search in Google Scholar

49. Kunanopparat, T, Menut, P, Morel, MH, Guilbert, S. Reinforcement of plasticized wheat gluten with natural fibers: from mechanical improvement to deplasticizing effect. Compos Appl Sci Manuf 2008;39:777–85. https://doi.org/10.1016/j.compositesa.2008.02.001.Search in Google Scholar

50. Mali, S, Grossmann, MVE, García, MA, Martino, MN, Zaritzky, NE. Microstructural characterization of yam starch films. Carbohydrate Polym 2002;50:379–86. https://doi.org/10.1016/s0144-8617(02)00058-9.Search in Google Scholar

51. Agustin, MB, Ahmmad, B, Leon, ERPD, Buenaobra, JL, Salazar, JR, Hirose, F. Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polym Compos 2013;34:1325–32. https://doi.org/10.1002/pc.Search in Google Scholar

52. Sudharsan, K, Mohan, CC, Babu, PAS, Archana, G, Sabina, K, Sivarajan, M, et al.. Production and characterization of cellulose reinforced starch (CRT) films. Int J Biol Macromol 2016;83:385–95. https://doi.org/10.1016/j.ijbiomac.2015.11.037.Search in Google Scholar PubMed

53. Kadier, A, Ilyas, RA, Huzaifah, MRM, Harihastuti, N, Sapuan, SM, Harussani, MM, et al.. Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production : mechanism , advances , and future perspectives. Polymers 2021;13:1–51. https://doi.org/10.3390/polym13193365.Search in Google Scholar PubMed PubMed Central

54. Norfarhana, AS, Ilyas, RA, Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr Polym 2022;291:119563. https://doi.org/10.1016/j.carbpol.2022.119563.Search in Google Scholar PubMed

55. Azeredo, HMC, Rosa, MF, Mattoso, LHC. Nanocellulose in bio-based food packaging applications. Ind Crop Prod 2017;97:664–71. https://doi.org/10.1016/j.indcrop.2016.03.013.Search in Google Scholar

56. Dong, H, Snyder, JF, Tran, DT, Leadore, JL. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 2013;95:760–7. https://doi.org/10.1016/j.carbpol.2013.03.041.Search in Google Scholar PubMed

57. Fortunati, E, Armentano, I, Zhou, Q, Iannoni, A, Saino, E, Visai, L, et al.. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 2012;87:1596–605. https://doi.org/10.1016/j.carbpol.2011.09.066.Search in Google Scholar

58. Kumar, R, Münstedt, H. Silver ion release from antimicrobialpolyamide/silver composites. Biomaterials 2005;26:2081–8. https://doi.org/10.1016/j.biomaterials.2004.05.030.Search in Google Scholar PubMed

59. Salmieri, S, Islam, F, Khan, RA, Hossain, FM, Ibrahim, HMM, Miao, C, et al.. Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of listeria monocytogenes in ham. Cellulose 2014;21:1837–50. https://doi.org/10.1007/s10570-014-0230-6.Search in Google Scholar

Received: 2023-01-09
Accepted: 2023-03-24
Published Online: 2023-05-09

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0021/html
Scroll to top button