Startseite Molecular structure and vibrational spectra of 2-(4-bromophenyl)-3-(4-hydroxyphenyl) 1,3-thiazolidin-4-one and its selenium analogue: Insights using HF and DFT methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular structure and vibrational spectra of 2-(4-bromophenyl)-3-(4-hydroxyphenyl) 1,3-thiazolidin-4-one and its selenium analogue: Insights using HF and DFT methods

  • Helen P. Kavitha EMAIL logo , Lydia Rhyman und Ponnadurai Ramasami EMAIL logo
Veröffentlicht/Copyright: 10. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

2-(4-Bromophenyl)-3-(4-hydroxyphenyl)-1,3-thiazolidin-4-one and its selenium analogue were studied in the gas phase using HF and DFT methods. The functionals considered were B3LYP, BP86 and M06. The basis set for all the atoms was 6-311++ G(d,p). Molecular parameters such as bond lengths, bond angles, rotational constants, dipole moments, electronic energies, and vibrational parameters namely harmonic vibrational frequencies and relative intensities were computed for these compounds. Atomization energies, HOMO-LUMO gaps and natural charges on the atoms were also calculated. The molecular parameters and the vibrational spectra of sulfur compound are in good agreement with the experimental data. Therefore, the data for the selenium analogue should be helpful in its future characterization.

Acknowledgements

HPK acknowledges the University Grants Commission of India and Tertiary Education Commission for the financial assistance. The authors thank their respective universities for the facilities provided.

References

[1] Srivastava SK, Srivastava SL, Srivastava SD. Synthesis of 5-Arylidene-2-aryl-3-(2-chlorophenothiazinoacetamidyl)-1,3-thiazolidin-4-ones as Antifungal and Anticonvulsant Agents. J Indian Chem Soc. 2000;39B:464–710.1002/chin.200117133Suche in Google Scholar

[2] Gomtsyan A. Heterocycles in Drugs and Drug Discovery. Chem Heterocycl Compd. 2012;48:7–10.10.1007/s10593-012-0960-zSuche in Google Scholar

[3] Dua R, Shrivastava S, Sonwane SK, Srivastava SK. Pharmacological Significance of Synthetic Heterocycles Scaffold : A Review. Adv Biol Res (Rennes). 2011;5:120–44.Suche in Google Scholar

[4] Solankee AN, Patel KP, Patel RB. Efficient Synthesis and Phamacological Evaluation of some New 4-Thiazolidinones and 5-Arylidenes. Arch Appl Sci Res. 2012;4:72–7.Suche in Google Scholar

[5] Ravichandran V, Jain A, Kumar KS, Rajak H, Agrawal RK. Design, Synthesis, and Evaluation of Thiazolidinone Derivatives as Antimicrobial and Antiviral Agents. Chem Biol Drug Des. 2011;78:464–70.10.1111/j.1747-0285.2011.01149.xSuche in Google Scholar PubMed

[6] Devappa SL, Reddy KRV, Govinda Raju Reddy KB, Sahana KN, Smitha NC. A Simple and Efficient Carbodiimide Mediated One-Pot Synthesis of Novel 2-(2- hydroxynaphthalen-1-yl)-3-phenyl-1,3-thiazolidin-4-one Derivatives: A Potent Antimicrobial Agent. Int J ChemTech Res. 2010;2:1220–8.Suche in Google Scholar

[7] Bhati SK, Kumar A. Synthesis of New Substituted Azetidinoyl and Thiazolidinoyl-1,3,4-thiadiazino (6,5-b) Indoles as Promising Anti-Inflammatory Agents. Eur J Med Chem. 2008;43:2323–30.10.1016/j.ejmech.2007.10.012Suche in Google Scholar PubMed

[8] Voss ME, Carter PH, Tebben AJ, Scherle PA, Brown GD, Thompson LA, Xu M, Lo YC, Yang G, Liu R-Q, Strzemienski P, Everlof JG, Trzaskos JM, Decicco CP. Both 5-Arylidene-2-thioxodihydropyrimidine-4,6(1H,5H)-diones and 3-Thioxo-2,3-dihydro-1H-imidazo[1,5-a]indol-1-ones are Light-Dependent Tumor Necrosis Factor-α Antagonists. Bioorg Med Chem Lett. 2003;13:533–8.10.1016/S0960-894X(02)00941-1Suche in Google Scholar PubMed

[9] Karthikeyan SV, Perumal S, Shetty KA, Yogeeswari P, Sriram D. A Microwave-Assisted Facile Regioselective Fischer Indole Synthesis and Antitubercular Evaluation of Novel 2-Aryl-3,4-dihydro-2H-thieno[3,2-b]indoles. Bioorg Med Chem Lett. 2009;19:3006–9.10.1016/j.bmcl.2009.04.029Suche in Google Scholar PubMed

[10] Agarwal A, Lata S, Saxena KK, Srivastava VK, Kumar A. Synthesis and Anticonvulsant Activity of some Potential Thiazolidinonyl 2-Oxo/Thiobarbituric Acids. Eur J Med Chem. 2006;41:1223–9.10.1016/j.ejmech.2006.03.029Suche in Google Scholar PubMed

[11] Ravichandran V, Prashantha Kumar BR, Sankar S, Agrawal RK. Predicting Anti-HIV Activity of 1,3,4-Thiazolidinone Derivatives: 3D-QSAR Approach. Eur J Med Chem. 2009;44:1180–7.10.1016/j.ejmech.2008.05.036Suche in Google Scholar PubMed

[12] Chaudhari SK, Verma M, Chaturvedi AK, Parmar SS. Substituted Thiazolidones: Selective Inhibition of Nicotinamide Adenine Dinucleotide‐Dependent Oxidations and Evaluation of their CNS Activity. J Pharma Sci. 1975;64:614–7.10.1002/jps.2600640408Suche in Google Scholar PubMed

[13] Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal AK. Recent Developments and Biological Activities of Thiazolidinone Derivatives: A Review. Bioorg Med Chem. 2012;20:3378–95.10.1016/j.bmc.2012.03.069Suche in Google Scholar PubMed

[14] Jaya Preethi P, Bindu Sree K, Pavan Kumar K, Rajavelu R, Sivakumar T. Synthesis, Characterization and its Biological Evaluation of some Novel 4-Thiazolidinone and 2-Azetidinone Derivatives. Asian J Pharm Res. 2012;2:63–70.Suche in Google Scholar

[15] Sriram D, Yogeeshwari P, Ashok Kumar TG. Microwave-Assisted Synthesis and Anti-YFV Activity of 2,3-Diaryl-1,3-thiazolidin-4-ones. J Pharm Pharm Sci. 2005;8:426–9.Suche in Google Scholar PubMed

[16] Gupta R, Chaudhary RP. X-ray, NMR and DFT Studies on Benzo[h]thiazolo[2,3-b]quinazoline Derivatives. J Mol Struct. 2013;1049:189–197.10.1016/j.molstruc.2013.06.038Suche in Google Scholar

[17] Ostadalova I. Biological Effects of Selnium Compounds with a Particular Attention to the Ontogenetic Development. Physiol Res. 2012;61:S19–S34.10.33549/physiolres.932327Suche in Google Scholar PubMed

[18] Iwaoka M, Arai K. From Sulfur to Selenium. A New Research Arena in Chemical Biology and Biological Chemistry. Curr Chem Biol. 2013;7:2–24.10.2174/2212796811307010002Suche in Google Scholar

[19] Kaur R, Singh HB, Patel RP, Kulshreshtha SK. Syntheses, Characterization and Molecular Structures of Monomeric Selenolato Complexes of Mercury with Nitrogen-Containing Chelating Ligands. J Chem Soc Dalton Trans. 1996;461–710.1039/dt9960000461Suche in Google Scholar

[20] Bochmann M. Metal Chalcogenide Materials: Chalcogenolato complexes as “single‐source” precursors. Chem Vap Deposition. 1996;2:85–96.10.1002/cvde.19960020302Suche in Google Scholar

[21] Vennila JP, John Thiruvadigal D, Kavitha HP, Chakkaravarthi G, Manivannan V. 2-Chloro-4,6-bis­(piperidin-1-yl)-1,3,5-triazine. Acta Cryst. 2011;67:1902.Suche in Google Scholar

[22] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian 03, Revision C.02, Wallingford, CT: Gaussian Inc., 2004.Suche in Google Scholar

[23] Dennington II R, Keith T, Milliam J, Eppinnett K, Hovell WL, Gilliland R. GaussView, version 3.09, Shawnee Mission, KS: Semichem, Inc., 2003.Suche in Google Scholar

[24] Arjunan V, Arushma R, Santhanam R, Marchewka MK, Mohan S. Structural, Vibrational, Electronic Investigations and Quantum Chemical Studies of 2-Amino-4-methoxybenzothiazole. Spectrochim Acta A Mol Biomol Spectrosc. 2013;102:327–40.10.1016/j.saa.2012.09.076Suche in Google Scholar PubMed

[25] Hodage AS, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK. Crystal Structure of 2,2¢-Diselenobis(acetic acid). X-Ray Struct Anal Online. 2009;25:101.© The Japan Society for Analytical Chemistry.10.2116/xraystruct.25.101Suche in Google Scholar

[26] Kandasamy K, Kumar S, Singh HB, Butcher RJ, Holman T. Synthesis, Structural Characterization and Fluorescence Properties of Organoselenium Compounds Bearing a Ligand Containing both Bulky and Nonbonding Groups − The First Observation of both Intramolecular Se···N and Se···O Interactions in a Diselenide Structure. Eur J Inorg Chem. 2004;2004:1014–2310.1002/ejic.200300603Suche in Google Scholar

[27] Rhyman L, Abdallah HH, Ramasami P. Quantum Mechanical Study of the Syn-Anti Isomerisation of 2-Tellurophenecarboaldehyde: Vive la Différence. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78:258–63.10.1016/j.saa.2010.10.004Suche in Google Scholar PubMed

[28] Rhyman L, Abdallah HH, Ramasami P. Theoretical Study of the Structural, Spectroscopic and Energetic Properties of Difluoro(germylthio)phosphine and Difluoro(germylseleno)phosphine in the Gas Phase. Polyhedron. 2010;29:220–5.10.1016/j.poly.2009.07.007Suche in Google Scholar

[29] Singh RN, Amit K, Tiwari RK, Poonam R, Divya V, Baboo V. Synthesis, Molecular Structure and Spectral Analysis of Ethyl 4-Formyl-3,5-dimethyl-1H-pyrrole-2-carboxylate Thiosemicarbazone: A Combined DFT and AIM Approach. J Mol Struct. 2012;1016:97–108.10.1016/j.molstruc.2012.02.033Suche in Google Scholar

[30] Rhyman L, Abdallah HH, Ramasami P. Quantum Mechanical Study of the Structure and Spectroscopic Characterisation of the Novel Trisilylsilylcyanide and Trigermylgermylcyanide in the Gas Phase. Polyhedron. 2010;29:1168–74.10.1016/j.poly.2009.12.010Suche in Google Scholar

[31] Roeges NPG. A guide to the complete interpretation of infrared spectra of organic structures. New York: Wiley, 1981.Suche in Google Scholar

[32] Barthes M, De Nunzio G, Ribet M. Polarons or proton transfer in chains of peptide groups?. Synth Met. 1996;76:337–40.10.1016/0379-6779(95)03484-2Suche in Google Scholar

[33] Bahgat K, Ragheb AG. Analysis of Vibrational Spectra of 8-Hydroxyquinoline and its 5,7-Dichloro, 5,7-Dibromo, 5,7-Diiodo and 5,7-Dinitro Derivatives Based on Density Functional Theory Calculations. Cent Europ J Chem. 2007;5:201–21.Suche in Google Scholar

[34] Singh RN, Amit K, Tiwari RK, Rawat P. A Combined Experimental and Theoretical (DFT and AIM) Studies on Synthesis, Molecular Structure, Spectroscopic Properties and Multiple Interactions Analysis in a Novel Ethyl-4-[2-(thiocarbamoyl)hydrazinylidene]-3,5-dimethyl-1H-pyrrole-2-carboxylate and its Dimer. Spectrochim Acta A Mol Biomol Spectrosc. 2013;112:182–90.10.1016/j.saa.2013.04.002Suche in Google Scholar

[35] Jensen JN. Vibrational Frequencies and Structural Determination of Tetraazidogermane. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59:2805–14.10.1016/S1386-1425(03)00105-7Suche in Google Scholar PubMed

[36] Gece G. The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies. Corros Sci. 2008;50:2981-2992.10.1016/j.corsci.2008.08.043Suche in Google Scholar

[37] Fukui K. Role of Frontier Orbitals in Chemical Reactions. Science. 1987;218:747–54.10.1142/9789812795847_0015Suche in Google Scholar

[38] Jensen JN. Vibrational Frequencies and Structural Determination of Triethynylmethylgermane. Spectrochim Acta A Mol Biomol Spectrosc. 2004;60:2819–24.10.1016/j.saa.2004.01.024Suche in Google Scholar PubMed

[39] Gupta R, Chaudhary RP X-ray, NMR and DFT Studies on Benzo[h]thiazolo[2,3-b]quinazoline Derivatives. J Mol Struct. 2013;1049:189–97.10.1016/j.molstruc.2013.06.038Suche in Google Scholar

Published Online: 2018-10-10

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0031/html?lang=de
Button zum nach oben scrollen