Abstract
New strategies for the reforming of methanol under mild conditions on the basis of heterogeneous and molecular catalysts have raised the hopes and expectations on this fuel. This contribution will focus on the progress achieved in the production of hydrogen from aqueous and anhydrous methanol with molecular and heterogeneous catalysts. The report entails thermal approaches, as well as light-triggered dehydrogenation reactions. A comparison of the efficiency and mechanistic aspects will be made and principles of catalytic pathways operating in biological systems will be also addressed.
References
[1] (a) Olah GA, Goeppert A, Prakash GK. Beyond oil and gas: the methanol economy. 2006. (b) Tenenbaum DJ. Food vs fuel: diversion of crops could cause more hunger. Environ Health Perspect. 2008;116:A254–A257. (c) Fischer F, Tropsch H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff Chem. 1923;4:276–285. (d) Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A Gen. 1999;186:3–12.Suche in Google Scholar
[2] Zhang Q, He D, Zhu Q. Recent progress in direct partial oxidation of methane to methanol. J Nat Gas Chem. 2003;309:263–268Suche in Google Scholar
[3] King AD, King RB, Yang DB. Homogeneous catalysis of the water gas shift reaction using iron pentacarbonyl. J Am Chem Soc. 1980;102:1028–32.10.1021/ja00523a020Suche in Google Scholar
[4] McFarland E. Unconventional chemistry for unconventional natural gas. Science. 2012;338:340–2.10.1126/science.1226840Suche in Google Scholar PubMed
[5] Hammond C, Conrad S, Hermans I. Oxidative methane upgrading. Chem Sus Chem. 2012;5:1668–86.10.1002/cssc.201200299Suche in Google Scholar PubMed
[6] Caballero A, Pérez PJ. Methane as raw material in synthetic chemistry: the final frontier. Chem Soc Rev. 2013;42:8809–20.10.1039/c3cs60120jSuche in Google Scholar PubMed
[7] Tomkins P, Ranocchiari M, Van Bokhoven JA. Direct conversion of methane to methanol under mild conditions over Cu-Zeolites and beyond. Acc Chem Res. 2017;50:418–25.10.1021/acs.accounts.6b00534Suche in Google Scholar PubMed
[8] Tang P, Zhu Q, Wu Z, Ma D. Methane activation: the past and future. Energy Environ Sci. 2014;7:2580–91.10.1039/C4EE00604FSuche in Google Scholar
[9] Dybkjær I, Aasberg Petersen K. Synthesis gas technology large‐scale applications. Can J Chem Eng. 2016;94:607–12.10.1002/cjce.22453Suche in Google Scholar
[10] Olivos-Suarez AI, Szécsényi À, Hensen EJ, Ruiz-Martinez J, Pidko EA, Gascon J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal. 2016;6:2965–81.10.1021/acscatal.6b00428Suche in Google Scholar
[11] Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science. 1998;280:560–4.10.1126/science.280.5363.560Suche in Google Scholar PubMed
[12] McCoy M. German firm claims new route to methanesulfonic acid. Chem Eng News. 2016;94:10.Suche in Google Scholar
[13] Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt A, Selective RA. Oxidation of methane by the Bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc. 2005;127:1394–5.10.1021/ja047158uSuche in Google Scholar PubMed
[14] Beznis NV, Weckhuysen BM, Bitter JH. Cu-ZSM-5 zeolites for the formation of methanol from methane and oxygen: probing the active sites and spectator species. Catal Lett. 2010;138:14–22.10.1007/s10562-010-0380-6Suche in Google Scholar
[15] Alayon EM, Nachtegaal M, Bodi A, Ranocchiari M, Van Bokhoven JA. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Phys Chem Chem Phys. 2015;17:7681–93.10.1039/C4CP03226HSuche in Google Scholar PubMed
[16] Vanelderen P, Snyder BE, Tsai M-L, Hadt RG, Vancauwenbergh J, Coussens O, et al. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. J Am Chem Soc. 2015;137:6383–92.10.1021/jacs.5b02817Suche in Google Scholar PubMed
[17] Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJ, Pidko EA. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J Catal. 2016;338:305–12.10.1016/j.jcat.2016.03.014Suche in Google Scholar
[18] Bozbag SE, Alayon EM, Pecháček J, Nachtegaal M, Ranocchiari M, Van Bokhoven JA. Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques. Catal Sci Technol. 2016;6:5011–22.10.1039/C6CY00041JSuche in Google Scholar
[19] Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EM, et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew Chem Int Ed. 2016;55:5467–71.10.1002/anie.201511065Suche in Google Scholar PubMed
[20] Alayon EM, Nachtegaal M, Ranocchiari M, Van Bokhoven JA. Catalytic conversion of methane to methanol over Cu-mordenite. Chem Commun (Camb). 2012;48:404–6.10.1039/C1CC15840FSuche in Google Scholar PubMed
[21] Sushkevich VL, Palagin D, Ranocchiari M, Van Bokhoven JA. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science. 2017;356:523–7.10.1126/science.aam9035Suche in Google Scholar PubMed
[22] Ikuno T, Zheng J, Vjunov A, Sanchez-Sanchez M, Ortuño MA, Pahls DR, et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J Am Chem Soc. 2017;139:10294–301.10.1021/jacs.7b02936Suche in Google Scholar PubMed
[23] Li Y-N, Ma R, He L-N, Diao Z-F. Homogeneous hydrogenation of carbon dioxide to methanol. Catal Sci Technol. 2014;4:1498–512.10.1039/C3CY00564JSuche in Google Scholar
[24] Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed. 2016;55:7296–343.10.1002/anie.201507458Suche in Google Scholar PubMed
[25] Chauvier C, Cantat TA. Viewpoint on chemical reductions of carbon–oxygen bonds in renewable feedstocks including CO2 and biomass. ACS Catal. 2017;7:2107–15.10.1021/acscatal.6b03581Suche in Google Scholar
[26] Dong K, Razzaq R, Hu Y, Ding K. Homogeneous reduction of carbon dioxide with hydrogen. Top Curr Chem. 2017;2:1–26.10.1007/978-3-319-77757-3_6Suche in Google Scholar
[27] Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev. 2015;115:12936–73.10.1021/acs.chemrev.5b00197Suche in Google Scholar PubMed
[28] Annibale VT, Song D. Reversible formal insertion of CO2 into a remote C-H bond of a ligand in a Ru(ii) complex at room temperature. Chem Commun (Camb). 2012;48:5416–8.10.1039/c2cc17933dSuche in Google Scholar PubMed
[29] Vogt M, Nerush A, Diskin-Posner Y, Ben-David Y, Milstein D. Reversible CO2 binding triggered by metal-ligand cooperation in a rhenium(i) PNP pincer-type complex and the reaction with dihydrogen. Chem Sci. 2014;5:2043–51.10.1039/C4SC00130CSuche in Google Scholar
[30] Vogt M, Gargir M, Iron MA, Diskin-Posner Y, Ben-David Y, Milstein D, et al. Mode of activation of CO2 by metal–ligand cooperation with reversible C–C and M–O bond formation at ambient temperature. Chem-Eur J. 2012;18:9194–7.10.1002/chem.201201730Suche in Google Scholar PubMed
[31] Huff CA, Kampf JW, Sanford MS. Role of a noninnocent pincer ligand in the activation of CO2 at (PNN)Ru(H)(CO). Organometallics. 2012;31:4643–5.10.1021/om300403bSuche in Google Scholar
[32] Filonenko GA, Conley MP, Copéret C, Lutz M, Hensen EJ, Pidko EA. The impact of metal–ligand cooperation in hydrogenation of carbon dioxide catalyzed by ruthenium PNP pincer. ACS Catal. 2013;3:2522–6.10.1021/cs4006869Suche in Google Scholar
[33] Stichauer R, Helmers A, Bremer J, Rohdenburg M, Wark A, Lork E, et al. Rhenium(I) triscarbonyl complexes with redox-active amino- and iminopyridine ligands: metal–ligand cooperation as trigger for the reversible binding of CO2 via a dearmomatization/rearomatization reaction sequence. Organometallics. 2017;36:839–48.10.1021/acs.organomet.6b00897Suche in Google Scholar
[34] Castro-Rodriguez I, Nakai H, Zakharov LN, Rheingold AL, Meyer K. A linear, O-coordinated eta1-CO2 bound to uranium. Science. 2004;305:1757–9.10.1126/science.1102602Suche in Google Scholar PubMed
[35] Annibale VT, Song D. Reaction of dinuclear rhodium 4,5-diazafluorenyl-9-carboxylate complexes with H2 and CO2. Organometallics. 2014;33:2776–83.10.1021/om500278aSuche in Google Scholar
[36] Annibale VT, Dalessandro DA, Song D. Tuning the reactivity of an actor ligand for tandem CO2 and C–H activations: from spectator metals to metal-free. J Am Chem Soc. 2013;135:16175–83.10.1021/ja4073832Suche in Google Scholar PubMed
[37] Braunstein P, Matt D, Dusausoy Y, Fischer J, Mitschler A, Ricard L. Complexes of functional phosphines. 4. Coordination properties of (diphenylphosphino)acetonitrile, ethyl (diphenylphosphino)acetate and corresponding carbanions. Characterization of a new facile reversible carbon dioxide insertion into palladium(II) complexes. J Am Chem Soc. 1981;103:5115–25.10.1021/ja00407a028Suche in Google Scholar
[38] Braunstein P, Matt D, Nobel D. Carbon dioxide activation and catalytic lactone synthesis by telomerization of butadiene and carbon dioxide. J Am Chem Soc. 1988;110:3207–12.10.1021/ja00218a033Suche in Google Scholar
[39] Tominaga K-I, Sasaki Y, Kawai M, Watanabe T, Saito M. Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane. J Chem Soc Chem Commun. 1993;0:629–31.10.1039/c39930000629Suche in Google Scholar
[40] Wesselbaum S, Stein Vom T, Klankermayer J, Leitner W. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst. Angew Chem Int Ed. 2012;51:7499–502.10.1002/anie.201202320Suche in Google Scholar PubMed
[41] Wesselbaum S, Moha V, Meuresch M, Brosinski S, Thenert KM, Kothe J, et al. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–triphos catalyst: from mechanistic investigations to multiphase catalysis. Chem Sci. 2014;6:693–04.10.1039/C4SC02087ASuche in Google Scholar PubMed
[42] Schneidewind J, Adam R, Baumann W, Jackstell R, Beller M. Low-temperature hydrogenation of carbon dioxide to methanol with a homogeneous cobalt catalyst. Angew Chem. 2017;129:1916–9.10.1002/ange.201609077Suche in Google Scholar
[43] Balaraman E, Gunanathan C, Zhang J, Shimon LJ, Milstein D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat Chem. 2011;3:609–14.10.1038/nchem.1089Suche in Google Scholar PubMed
[44] Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K. Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. Angew Chem Int Ed. 2012;51:13041–5.10.1002/anie.201207781Suche in Google Scholar
[45] Huff CA, Sanford MS. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc. 2012;133:18122–5.10.1021/ja208760jSuche in Google Scholar
[46] Rochelle GT. Amine scrubbing for CO2 capture. Science. 2009;325:1652–4.10.1126/science.1176731Suche in Google Scholar PubMed
[47] Dutcher B, Fan M, Russell AG. Amine-based CO2 capture technology development from the beginning of 2013 – a review. ACS Appl Mater Interfaces. 2015;7:2137–48.10.1021/am507465fSuche in Google Scholar PubMed
[48] Balaraman E, Ben-David Y, Milstein D. Unprecedented catalytic hydrogenation of urea derivatives to amines and methanol. Angew Chem Int Ed. 2011;50:11702–5.10.1002/anie.201106612Suche in Google Scholar
[49] Balaraman E, Gnanaprakasam B, Shimon LJ, Milstein D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J Am Chem Soc. 2010;132:16756–8.10.1021/ja1080019Suche in Google Scholar PubMed
[50] Rezayee NM, Huff CA, Sanford MS. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J Am Chem Soc. 2015;137:1028–31.10.1021/ja511329mSuche in Google Scholar PubMed
[51] Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GK. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc. 2016;138:778–81.10.1021/jacs.5b12354Suche in Google Scholar
[52] Sahm H, Wagner F. Microbial assimilation of methanol. Febs J. 1973;36:250–6.Suche in Google Scholar
[53] Mani J-C, Pietruszko R, Theorell H. Methanol activity of alcohol dehydrogenases from human liver, horse liver, and yeast. Arch Biochem Biophys. 1970;140:52–9.10.1016/0003-9861(70)90009-3Suche in Google Scholar PubMed
[54] Sheehan MC, Bailey CJ, Dowds BC, McConnell DJ. A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus. Biochem J. 1988;252:661–6.10.1042/bj2520661Suche in Google Scholar PubMed PubMed Central
[55] Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev. 2015;95:603–44.10.1152/physrev.00034.2014Suche in Google Scholar PubMed
[56] Wagner F. Methanol: a fermentation substrate. Experientia. 1977;33:110–3.10.1007/BF01936782Suche in Google Scholar PubMed
[57] Patel RN, Bose HR, Mandy WJ, Hoare DS. Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus (Texas strain) and Pseudomonas species M27. J Bacteriol. 1972;110:570–7.10.1128/jb.110.2.570-577.1972Suche in Google Scholar PubMed
[58] Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectr. 2016;76:91–102.10.1016/j.bios.2015.06.029Suche in Google Scholar
[59] Ghosh M, Anthony C, Harlos K, Goodwin MG, Blake C. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 å. Structure. 1995;3:177–87.10.1016/S0969-2126(01)00148-4Suche in Google Scholar PubMed
[60] Anthony C, Williams P. The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta (BBA) Prot Proteom. 2003;1647:18–23.10.1016/S1570-9639(03)00042-6Suche in Google Scholar
[61] Oubrie A, Dijkstra BW. Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions. Prot Sci. 2000;9:1265–73.10.1110/ps.9.7.1265Suche in Google Scholar
[62] Jongejan A, Jongejan JA, Hagen WR. Direct hydride transfer in the reaction mechanism of quinoprotein alcohol dehydrogenases: a quantum mechanical investigation. J Comput Chem. 2001;22:1732–49.10.1002/jcc.1128Suche in Google Scholar PubMed
[63] Dircks K. Recent advances in fuel cells for transportation applications. In: SAE international: 400 commonwealth drive. vol. 1. SAE Technical Paper, Warrendale, PA, United States, 1999:1999–01–0534.10.4271/1999-01-0534Suche in Google Scholar
[64] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today. 1997;38:445–57.10.1016/S0920-5861(97)00054-0Suche in Google Scholar
[65] Heinzel A, Barragan VM. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Pow Sour. 1999;84:70–4.10.1016/S0378-7753(99)00302-XSuche in Google Scholar
[66] Iwasita T. Electrocatalysis of methanol oxidation. Electrochimica Acta. 2002;47:3663–74.10.1016/S0013-4686(02)00336-5Suche in Google Scholar
[67] Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M. Recent advances in the development of direct alcohol fuel cells (DAFC). J Pow Sour. 2002;105:283–96.10.1016/S0378-7753(01)00954-5Suche in Google Scholar
[68] Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP. A review of anode catalysis in the direct methanol fuel cell. J Pow Sour. 2006;155:95–110.10.1016/j.jpowsour.2006.01.030Suche in Google Scholar
[69] Neburchilov V, Martin J, Wang H, Zhang J. A review of polymer electrolyte membranes for direct methanol fuel cells. J Pow Sour. 2007;169:221–38.10.1016/j.jpowsour.2007.03.044Suche in Google Scholar
[70] Lamy C, Léger JM, Srinivasan S. In: Bockris JO, Conway BE, editors. Modern aspects of electrochemistry, vol. 34. Springer US, New York, 2000.Suche in Google Scholar
[71] Van Den Tillaart JA, Kuster BF, Marin GB. Oxidative dehydrogenation of aqueous ethanol on a carbon supported platinum catalyst. Appl Catal A: General. 1994;120:127–45.10.1016/0926-860X(94)80338-2Suche in Google Scholar
[72] Antolini E, Gonzalez ER. Alkaline direct alcohol fuel cells. J Pow Sour. 2010;195:3431–50.10.1016/j.jpowsour.2009.11.145Suche in Google Scholar
[73] Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, et al. Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B: Environmental. 2003;46:273–85.10.1016/S0926-3373(03)00218-2Suche in Google Scholar
[74] Garcia G, Baglio V, Stassi A, Pastor E, Antonucci V, Aricò AS. Investigation of Pt–Ru nanoparticle catalysts for low temperature methanol electro-oxidation. J Solid State Electrochem. 2007;11:1229–38.10.1007/s10008-007-0274-8Suche in Google Scholar
[75] Mustain WE, Kim H, Narayanan V, Osborn T, Kohl PA. Electroless deposition and characterization of PtxRu1−x catalysts on Pt/C nanoparticles for methanol oxidation. J Fuel Cell Sci Technol. 2010;7:041013.10.1115/1.4000675Suche in Google Scholar
[76] Jo J-N, Lee H-G, Yu Y-T. Size effect of Au nanoparticle on electrocatalytic activity of Pt-Au/C composite catalysts for methanol oxidation. Electrochem Solid-State Lett. 2011;14:B89–91.10.1149/1.3596723Suche in Google Scholar
[77] Hsu C-H, Liao H-Y, Wu Y-F, Kuo P-L. Benzylamine-assisted noncovalent exfoliation of graphite-protecting Pt nanoparticles applied as catalyst for methanol oxidation. ACS Appl Mater Interf. 2011;3:2169–72.10.1021/am200273sSuche in Google Scholar
[78] Naidoo S, Naidoo QY, Vaivars G. Low temperature quaternary catalyst synthesis used for methanol and hydrogen oxidation on MWCNT. Integr Ferroelectrics. 2010;103:80–9.10.1080/10584580802558266Suche in Google Scholar
[79] Kageyama S, Seino S, Nakagawa T, Nitani H, Ueno K, Daimon H, et al. Formation of PtRu alloy nanoparticle catalyst by radiolytic process assisted by addition of dl-tartaric acid and its enhanced methanol oxidation activity. J Nanopart Res. 2011;13:5275–87.10.1007/s11051-011-0513-xSuche in Google Scholar
[80] Kashyout AB, Nassr A, Giorgi L. Electrooxidation of methanol on carbon supported Pt-Ru nanocatalysts prepared by ethanol reduction method. Int J Electrochem Sci. 2011;6:379–393Suche in Google Scholar
[81] Ross PN. “Electrocatalysis” in frontiers of electrochemistry. Lipkowski J, Ross PN, editors. New York: Ross PN NY: Wiley VCN, 1998.Suche in Google Scholar
[82] Dillon R, Srinivasan S, Aricò AS, Antonucci V. International activities in DMFC R&D: status of technologies and potential applications. J Pow Sour. 2004;127:112–26.10.1016/j.jpowsour.2003.09.032Suche in Google Scholar
[83] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today. 1997;38:445.10.1016/S0920-5861(97)00054-0Suche in Google Scholar
[84] Liu Z, Zhang X, Hong L. Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun. 2009;11:925–8.10.1016/j.elecom.2009.02.030Suche in Google Scholar
[85] Kumar KS, Haridoss P, Seshadri SK. Synthesis and characterization of electrodeposited Ni–Pd alloy electrodes for methanol oxidation. Surf Coat Technol. 2008;202:1764–70.10.1016/j.surfcoat.2007.07.035Suche in Google Scholar
[86] Shen PK, Xu C, Zeng R, Liu Y. Electro-oxidation of methanol on NiO-promoted Pt∕C and Pd∕C catalysts. Electrochem Solid-State Lett. 2006;9:A39–42.10.1149/1.2139975Suche in Google Scholar
[87] Wang M, Liu W, Huang C. Investigation of PdNiO/C catalyst for methanol electrooxidation. Int J Hydrogen Energy. 2009;34:2758–64.10.1016/j.ijhydene.2009.01.070Suche in Google Scholar
[88] Fleischmann M, Korinek K, Pletcher D. The oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem Interfacial Electrochem. 1971;31:39–49.10.1016/S0022-0728(71)80040-2Suche in Google Scholar
[89] Cui X, Zhu Y, Hua Z, Feng J, Liu Z, Chen L, et al. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation. Energy Environ Sci. 2015;8:1261–6.10.1039/C5EE00240KSuche in Google Scholar
[90] Asghari E, Ashassi-Sorkhabi H, Vahed A, Rezaei-Moghadam B, Charmi GR. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation. Thin Solid Films. 2016;598:6–15.10.1016/j.tsf.2015.12.005Suche in Google Scholar
[91] Wu JB, Li ZG, Huang XH, Porous LY. Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation. J Pow Sour. 2013;224:1–5.10.1016/j.jpowsour.2012.09.085Suche in Google Scholar
[92] Tammam RH, Fekry AM, Saleh MM. Electrocatalytic oxidation of methanol on ordered binary catalyst of manganese and nickel oxide nanoparticles. Int J Hydrogen Energy. 2015;40:275–83.10.1016/j.ijhydene.2014.03.109Suche in Google Scholar
[93] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.10.1038/238037a0Suche in Google Scholar PubMed
[94] Dai K, Peng T, Ke D, Wei B. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology. 2009;20:125603.10.1088/0957-4484/20/12/125603Suche in Google Scholar PubMed
[95] Qian S, Wang C, Liu W, Zhu Y, Yao W, Lu X. An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J Mater Chem. 2011;21:4945–52.10.1039/c0jm03508dSuche in Google Scholar
[96] Edri E, Rabinovich E, Niitsoo O, Cohen H, Bendikov T, Hodes G. Uniform coating of light-absorbing semiconductors by chemical bath deposition on sulfide-treated ZnO nanorods. J Phys Chem C. 2010;114:13092–7.10.1021/jp104735cSuche in Google Scholar
[97] Huang H, Li D, Lin Q, Zhang W, Shao Y, Chen Y, et al. Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. Environ Sci Technol. 2009;43:4164–8.10.1021/es900393hSuche in Google Scholar PubMed
[98] Park H, Choi W, Hoffmann MR. Effects of the preparation method of the ternary CdS/TiO 2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem. 2008;18:2379–85.10.1039/b718759aSuche in Google Scholar
[99] Galińska A, Walendziewski J. Photocatalytic water splitting over Pt−TiO2 in the presence of sacrificial reagents. Energy & Fuels. 2005;19:1143–7.10.1021/ef0400619Suche in Google Scholar
[100] Bolton JR. Solar photoproduction of hydrogen: a review. Solar Energy. 1996;57:37–50.10.1016/0038-092X(96)00032-1Suche in Google Scholar
[101] Bard AJ. Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem. 1982;86:172–7.10.1021/j100391a008Suche in Google Scholar
[102] Hashimoto K, Kawai T, Sakata T. Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation. J Phys Chem. 1984;88:4083–8.10.1021/j150662a046Suche in Google Scholar
[103] Sakata T. Photocatalysis of irradiated semiconductor surfaces: its application to water splitting and some organic reactions. J Photochem. 1985;29:205–15.10.1016/0047-2670(85)87072-6Suche in Google Scholar
[104] Nada A, Barakat M, Hamed H, Mohamed N, Veziroglu T. Studies on the photocatalytic hydrogen production using suspended modified photocatalysts. Int J Hydrogen Energy. 2005;30:687–91.10.1016/j.ijhydene.2004.06.007Suche in Google Scholar
[105] Zhang Z, Bondarchuk O, White JM, Kay BD, Dohnálek Z. Imaging adsorbate O−H bond cleavage: methanol on TiO2(110). J Am Chem Soc. 2006;128:4198–9.10.1021/ja058466aSuche in Google Scholar PubMed
[106] Oviedo J, Sánchez-de-Armas R, San Miguel MÁ, Sanz JF. Methanol and water dissociation on TiO2 (110): the role of surface oxygen. J Phys Chem C. 2008;112:17737–40.10.1021/jp805759ySuche in Google Scholar
[107] Zhao J, Yang J, Petek H. Theoretical study of the molecular and electronic structure of methanol on a TiO2 (110) surface. Phys Rev B. 2009;80:235416.10.1103/PhysRevB.80.235416Suche in Google Scholar
[108] Zhou C, Ma Z, Ren Z, Mao X, Dai D, Yang X. Effect of defects on photocatalytic dissociation of methanol on TiO2(110). Chem Sci. 2011;2:1980–3.10.1039/c1sc00249jSuche in Google Scholar
[109] Guo Q, Xu C, Ren Z, Yang W, Ma Z, Dai D, et al. Stepwise photocatalytic dissociation of methanol and water on TiO2(110). J Am Chem Soc. 2012;134:13366–73.10.1021/ja304049xSuche in Google Scholar PubMed
[110] Awate SV, Deshpande SS, Rakesh K, Dhanasekaran P, Gupta NM. Role of micro-structure and interfacial properties in the higher photocatalytic activity of TiO2-supported nanogold for methanol-assisted visible-light-induced splitting of water. Phys Chem Chem Phys. 2011;13:11329–39.10.1039/c1cp21194cSuche in Google Scholar PubMed
[111] Chiarello GL, Aguirre MH, Selli E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal. 2010;273:182–90.10.1016/j.jcat.2010.05.012Suche in Google Scholar
[112] Kominami H, Sugahara H, Hashimoto K. Photocatalytic selective oxidation of methanol to methyl formate in gas phase over titanium(IV) oxide in a flow-type reactor. Catal Commun. 2010;11:426–9.10.1016/j.catcom.2009.11.014Suche in Google Scholar
[113] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38:253–78.10.1039/B800489GSuche in Google Scholar PubMed
[114] Chiarello GL, Ferri D, Selli E. Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal. 2011;280:168–77.10.1016/j.jcat.2011.03.013Suche in Google Scholar
[115] Pichat P, Herrmann JM, Disdier J, Courbon H, Mozzanega MN. Photocatalytic hydrogen-production from aliphatic-alcohols over a bifunctional platinum on titanium-dioxide catalyst. Nouv J Chim. 1981;5:627–36.Suche in Google Scholar
[116] Sakata T, Kawai T, Hashimoto K. Photochemical diode model of Pt/TiO2 particle and its photocatalytic activity. Chem Phys Lett. 1982;88:50–4.10.1016/0009-2614(82)80068-7Suche in Google Scholar
[117] Kawai M, Naito S, Tamaru K, Kawai T. The mechanism of photocatalytic hydrogen production from gaseous methanol and water: IR spectroscopic approach. Chem Phys Lett. 1983;98:377–80.10.1016/0009-2614(83)80227-9Suche in Google Scholar
[118] Harada H, Ueda T. Photocatalytic activity of ultra-fine rutile in methanol-water solution and dependence of activity on particle size. Chem Phys Lett. 1984;106:229–31.10.1016/0009-2614(84)80231-6Suche in Google Scholar
[119] Nishimoto S-I, Ohtani B, Kagiya T. Photocatalytic dehydrogenation of aliphatic alcohols by aqueous suspensions of platinized titanium dioxide. J Chem Soc, Faraday Trans 1: Phys Chem Cond Phases. 1985;81:2467–74.10.1039/f19858102467Suche in Google Scholar
[120] Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy. 2015;40:11094–111.10.1016/j.ijhydene.2014.12.035Suche in Google Scholar
[121] Hussein FH, Rudham R. Photocatalytic dehydrogenation of liquid alcohols by platinized anatase. J Chem Soc, Faraday Trans 1: Phys Chem Cond Phases. 1987;83:1631–9.10.1039/f19878301631Suche in Google Scholar
[122] Ebina Y, Tanaka A, Kondo JN, Domen K. Preparation of silica pillared Ca 2Nb 3O 10 and its photocatalytic activity. Chem Mater. 1996;8:2534–8.10.1021/cm960232qSuche in Google Scholar
[123] Patsoura A, Kondarides DI, Verykios XE. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today. 2007;124:94–102.10.1016/j.cattod.2007.03.028Suche in Google Scholar
[124] Yang Y, Chang C, Idriss H. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Appl Catal B: Environmental. 2006;67:217–22.10.1016/j.apcatb.2006.05.007Suche in Google Scholar
[125] Xu Q, Ma Y, Zhang J, Wang X, Feng Z, Li C. Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure. J Catal. 2011;278:329–35.10.1016/j.jcat.2011.01.001Suche in Google Scholar
[126] Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011;331:746–50.10.1126/science.1200448Suche in Google Scholar PubMed
[127] Ikeda M, Kusumoto Y, Yakushijin Y, Somekawa S, Ngweniform P, Ahmmad B. Hybridized synergy effect among TiO2, Pt and graphite silica on photocatalytic hydrogen production from water–methanol solution. Catal Commun. 2007;8:1943–6.10.1016/j.catcom.2007.03.015Suche in Google Scholar
[128] Jitputti J, Pavasupree S, Suzuki Y, Yoshikawa S. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method. J Solid State Chem. 2007;180:1743–9.10.1016/j.jssc.2007.03.018Suche in Google Scholar
[129] Sun W, Zhang S, Liu Z, Wang C, Mao Z. Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts. Int J Hydrogen Energy. 2008;33:1112–7.10.1016/j.ijhydene.2007.12.059Suche in Google Scholar
[130] Hang L, Xing Y, Jia Chen J, Li Z, Tian Z, Rong Zheng F, et al. Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nat Commun. 2013;4:127.10.1038/ncomms3500Suche in Google Scholar PubMed
[131] Wang C, Zhang X, Wei Y, Kong L, Chang F, Zheng H, et al. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO 2(B) nanotube heterojunction. Dalton Trans. 2015;44:13331–9.10.1039/C5DT01860ASuche in Google Scholar PubMed
[132] Zalas M, Laniecki M. Photocatalytic hydrogen generation over lanthanides-doped titania. Solar Energy Mater Solar Cells. 2005;89:287–96.10.1016/j.solmat.2005.02.014Suche in Google Scholar
[133] Silva CG, Sampaio MJ, Marques RR, Ferreira LA, Tavares PB, Silva AM, et al. Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Appl Catal B: Environmental. 2015;178:82–90.10.1016/j.apcatb.2014.10.032Suche in Google Scholar
[134] Moya A, Cherevan A, Marchesan S, Gebhardt P, Prato M, Eder D, et al. Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl Catal B: Environmental. 2015;179:574–82.10.1016/j.apcatb.2015.05.052Suche in Google Scholar
[135] Gu Q, Long J, Zhuang H, Zhang C, Zhou Y, Wang X. Ternary Pt/SnOx/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts. Phys Chem Chem Phys. 2014;16:12521–34.10.1039/c4cp01496kSuche in Google Scholar PubMed
[136] Kakuta S, Abe T, Novel A. Example of molecular hydrogen generation from formic acid at visible-light-responsive photocatalyst. ACS Appl Mater Interfaces. 2009;1:2707–10.10.1021/am900707eSuche in Google Scholar PubMed
[137] Matsumura M, Hiramoto M, Iehara T, Tsubomura H. Photocatalytic and photoelectrochemical reactions of aqueous solutions of formic acid, formaldehyde, and methanol on platinized cadmium sulfide powder and at a cadmium sulfide electrode. J Phys Chem. 1984;88:248–50.10.1021/j150646a017Suche in Google Scholar
[138] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2008;8:76–80.10.1142/9789814317665_0039Suche in Google Scholar PubMed
[139] Han B, Hu YH. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J Phys Chem C. 2015;119:18927–34.10.1021/acs.jpcc.5b04894Suche in Google Scholar
[140] Bowker M, Davies PR, Al-Mazroai LS. Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal Lett. 2009;128:253–5.10.1007/s10562-008-9781-1Suche in Google Scholar
[141] Greaves J, Al-Mazroai L, Nuhu A, Davies P, Bowker M. Photocatalytic methanol reforming on Au/TiO2 for hydrogen production. Gold Bull. 2006;39:216–9.10.1007/BF03215557Suche in Google Scholar
[142] Borgarello E, Pelizzetti E. UV-VIS light photocatalytic dihydrogen production from aliphatic alcohols over semiconductor particles. Chim & L Industria. 1983;65:474–8.Suche in Google Scholar
[143] Bahruji H, Bowker M, Brookes C, Davies PR, Wawata I. The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts. Appl Catal A: General. 2013;454:66–73.10.1016/j.apcata.2013.01.005Suche in Google Scholar
[144] Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, et al. Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano. 2014;8:3490–7.10.1021/nn500963mSuche in Google Scholar PubMed
[145] Bowker M, Morton C, Kennedy J, Bahruji H, Greves J, Jones W, et al. Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalysts. J Catal. 2014;310:10–5.10.1016/j.jcat.2013.04.005Suche in Google Scholar
[146] Parida KM, Martha S, Das DP, Biswal N. Facile fabrication of hierarchical N-doped GaZn mixed oxides for water splitting reactions. J Mater Chem. 2010;20:7144–9.10.1039/c0jm01098gSuche in Google Scholar
[147] Wang X, Peng W-C, Li X-Y. Photocatalytic hydrogen generation with simultaneous organic degradation by composite CdS–ZnS nanoparticles under visible light. Int J Hydrogen Energy. 2014;39:13454–61.10.1016/j.ijhydene.2014.04.034Suche in Google Scholar
[148] Kawai T, Sakata T. Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc, Chem Commun. 1980;0:694–5.10.1039/c39800000694Suche in Google Scholar
[149] Rosseler O, Shankar MV, Du MK, Schmidlin L, Keller N, Keller V. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal. 2010;269:179–90.10.1016/j.jcat.2009.11.006Suche in Google Scholar
[150] Bowker M, Millard L, Greaves J, James D, Soares J. Photocatalysis by au nanoparticles: reforming of methanol. Gold Bull. 2004;37:170–3.10.1007/BF03215209Suche in Google Scholar
[151] Wu G, Chen T, Su W, Zhou G, Zong X, Lei Z, et al. H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst. Int J Hydrogen Energy. 2008;33:1243–51.10.1016/j.ijhydene.2007.12.020Suche in Google Scholar
[152] Park M-S, Kang M. The preparation of the anatase and rutile forms of Ag–TiO2 and hydrogen production from methanol/water decomposition. Mater Lett. 2008;62:183–7.10.1016/j.matlet.2007.04.105Suche in Google Scholar
[153] Kudo A, Domen K, Maruya K-I, Onishi T. Photocatalytic activities of TiO2 loaded with NiO. Chem Phys Lett. 1987;133:517–9.10.1016/0009-2614(87)80070-2Suche in Google Scholar
[154] Kandiel TA, Dillert R, Robben L, Bahnemann DW. Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal Today. 2011;161:196–201.10.1016/j.cattod.2010.08.012Suche in Google Scholar
[155] Kudo A, Tanaka A, Domen K, Maruya K-I, Aika K-I, Onishi T. Photocatalytic decomposition of water over NiOK4Nb6O17 catalyst. J Catal. 1988;111:67–76.10.1016/0021-9517(88)90066-8Suche in Google Scholar
[156] Miwa T, Kaneco S, Katsumata H, Suzuki T, Ohta K, Chand Verma S, et al. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. Int J Hydrogen Energy. 2010;35:6554–60.10.1016/j.ijhydene.2010.03.128Suche in Google Scholar
[157] Xu S, Sun DD. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. Int J Hydrogen Energy. 2009;34:6096–104.10.1016/j.ijhydene.2009.05.119Suche in Google Scholar
[158] Valero JM, Obregón S, Active Site CG. Considerations on the photocatalytic H2 evolution performance of Cu-doped TiO2 obtained by different doping methods. ACS Catal. 2014;4:3320–9.10.1021/cs500865ySuche in Google Scholar
[159] Mozia S, Kułagowska A, Morawski A. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions. Molecules. 2014;19:19633–47.10.3390/molecules191219633Suche in Google Scholar PubMed PubMed Central
[160] Puga AV. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coordin Chem Rev. 2016;315:1–66.10.1016/j.ccr.2015.12.009Suche in Google Scholar
[161] Yamakawa T, Katsurao T, Shinoda S, Saito Y. Photocatalysis of trans-[RhCl(CO)(PPh3)2] under MLCT irradiation for 2-propanol dehydrogenation. J Mol Catal. 1987;42:183–6.10.1016/0304-5102(87)85024-1Suche in Google Scholar
[162] Nomura K, Saito Y, Shinoda S. Photocatalytic dehydrogenation of 2-propanol with carbonyl(halogeno)phosphine-rhodium complexes. J Mol Catal. 1989;52:99–111.10.1016/0304-5102(89)80084-7Suche in Google Scholar
[163] Morton D, Cole-Hamilton DJ, Utuk ID, Paneque-Sosa M, Lopez-Poveda M. Hydrogen production from ethanol catalysed by group 8 metal complexes. J Chem Soc, Dalton Trans. 1989;0:489–95.10.1039/dt9890000489Suche in Google Scholar
[164] Yoshida T, Okano T, Otsuka S. Activation of water molecules. 4. Generation of dihydrogen from water by rhodium(I) hydrido and rhodium(0) carbonyl compounds. J Am Chem Soc. 1980;102:5966–7.10.1021/ja00538a071Suche in Google Scholar
[165] Takahashi T, Shinoda S, Saito Y. The mechanisms of photocatalytic dehydrogenation of methanol in the liquid phase with cis- [Rh2Cl2(CO)2(dpm)2] complex catalyst. J Mol Catal. 1985;31:301–9.10.1016/0304-5102(85)85112-9Suche in Google Scholar
[166] Yamamoto H, Shinoda S, Saito Y. Photocatalytic dehydrogenation of methanol in the liquid phase with cis-Rh2Cl2(CO)2(dpm)2 and Pd2Cl2(dpm)2 complex catalysts. J Mol Catal. 1985;30:259–66.10.1016/0304-5102(85)80032-8Suche in Google Scholar
[167] Shinoda S, Moriyama H, Kise Y, Saito Y. Photo-enhanced production of hydrogen by liquid-phase catalytic dehydrogenation of propan-2-ol with rhodium–tin chloride complexes. J Chem Soc, Chem Commun. 1978;0:348–9.10.1039/C39780000348Suche in Google Scholar
[168] Moriyama H, Aoki T, Shinoda S, Saito Y. Photoenhanced catalytic dehydrogenation of propan-2-ol with homogeneous rhodium–tin complexes. J Chem Soc, Perkin Trans. 1982;2:369–74.10.1039/P29820000369Suche in Google Scholar
[169] Matsubara T, Saito Y, Yamakawa T, Shinoda S. Photocatalysis of tin(II)-coordinated iridium complexes for energy storing with quantum yield higher than unity in 2-propanol dehydrogenation. J Mol Catal. 1991;67:175–84.10.1016/0304-5102(91)85044-3Suche in Google Scholar
[170] Makita K, Nomura K, Saito Y. Photocatalytic dehydrogenation of methanol using [IrH(SnCl3)5]3−complex. J Mol Catal. 1994;89:143–9.10.1016/0304-5102(93)E0315-8Suche in Google Scholar
[171] Yamakawa T, Miyake H, Moriyama H, Shinoda S, Saito Y. Energy-storing photocatalysis of transition metal complexes with high quantum efficiency. J Chem Soc, Chem Commun. 1986;0:326–7.10.1039/c39860000326Suche in Google Scholar
[172] Matsubara T, Saito Y, Yamakawa T, Shinoda S. Thermo- and photocatalytic dehydrogenation of 2-propanol with [RuL(SnCl3)5]4− (L Cl− or SnCl3−) complexes. J Mol Catal. 1993;79:29–37.10.1016/0304-5102(93)85088-BSuche in Google Scholar
[173] Moriyama H, Pregosin PS, Saito Y, Yamakawa T. Synthesis and tin-119 nuclear magnetic resonance studies of trichlorostannate(II) complexes of ruthenium, osmium, and iridium. J Chem Soc, Dalton Trans. 1984;0:2329–32.10.1039/dt9840002329Suche in Google Scholar
[174] Irie R, Li X, Saito Y. Photocatalytic dehydrogenation of secondary alcohols with rhodium porphyrin complex. J Mol Catal. 1983;18:263–5.10.1016/0304-5102(83)80108-4Suche in Google Scholar
[175] Irie R, Li X, Saito Y. Reaction mechanism of photocatalysis for the liquid-phase dehydrogenation of 2-propanol with rhodium porphyrin complex. J Mol Catal. 1984;23:17–22.10.1016/0304-5102(84)85050-6Suche in Google Scholar
[176] Irie R, Li X, Saito Y. Quantum chemical interpretation of the dihydrogen formation process in photocatalytic 2-propanol dehydrogenation with rhodium porphyrin complex. J Mol Catal. 1984;23:23–7.10.1016/0304-5102(84)85051-8Suche in Google Scholar
[177] Li X, Shinoda S, Saito Y. Photocatalytic liquid-phase dehydrogenation of cyclohexanol with rhodium porphyrin complex. J Mol Catal. 1989;49:113–9.10.1016/0304-5102(89)80043-4Suche in Google Scholar
[178] Ligthart GB, Meijer RH, Donners MP, Meuldijk J, Vekemans JA, Hulshof LA. Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas. Tetrah Lett. 2003;44:1507–9.10.1016/S0040-4039(02)02842-3Suche in Google Scholar
[179] Gärtner F, Losse S, Boddien A, Pohl M-M, Denurra S, Junge H, et al. Hydrogen evolution from water/alcohol mixtures: effective in situ generation of an active Au/TiO2 catalyst. Chem Sus Chem. 2011;5:530–3.10.1002/cssc.201100281Suche in Google Scholar PubMed
[180] Cuendet P, Rao KK, Grätzel M, Hall DO. Light induced H2 evolution in a hydrogenase-TiO2 particle system by direct electron transfer or via rhodium complexes. Biochimie. 1986;68:217–21.10.1016/S0300-9084(86)81086-0Suche in Google Scholar
[181] Wee J-H. Applications of proton exchange membrane fuel cell systems. Renew Sus Energy Rev. 2007;11:1720–38.10.1016/j.rser.2006.01.005Suche in Google Scholar
[182] Pettersson LJ, Westerholm R. State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs. Int J Hydrogen Energy. 2001;26:243–64.10.1016/S0360-3199(00)00073-2Suche in Google Scholar
[183] Iulianelli A, Ribeirinha P, Mendes A, Basile A. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renew Sus Energy Rev. 2014;29:355–68.10.1016/j.rser.2013.08.032Suche in Google Scholar
[184] Madej-Lachowska M, Kulawska M, Słoczyński J. Methanol as a high purity hydrogen source for fuel cells: a brief review of catalysts and rate expressions. Chem Process Eng. 2017;38:147–62.10.1515/cpe-2017-0012Suche in Google Scholar
[185] Chein RY, Chen YC, Lin YS, Chung JN. Hydrogen production using integrated methanol‐steam reforming reactor with various reformer designs for PEM fuel cells. Int J Energy Res. 2012;36:466–76.10.1002/er.1805Suche in Google Scholar
[186] Basile A, Iulianelli A, Longo T, Liguori S, De Falco M. Pd-based selective membrane state-of-the-art. In: De De Falco M., Marrelli L., Iaquaniello G. (eds) Membrane Reactors for Hydrogen Production Processes. Springer, London, 2011:21–55.10.1007/978-0-85729-151-6_2Suche in Google Scholar
[187] Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, et al. Low temperature ethanol steam reforming in a Pd-Ag membrane reactor Part 1: Ru-based catalyst. J Membr Sci. 2008;308:250–7.10.1016/j.memsci.2007.10.001Suche in Google Scholar
[188] Yong ST, Ooi CW, Chai SP, Wu XS. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int J Hydrogen Energy. 2013;38:9541–52.10.1016/j.ijhydene.2013.03.023Suche in Google Scholar
[189] Hohn KL, Lin YC. Catalytic partial oxidation of methanol and ethanol for hydrogen generation. Chem Sus Chem. 2009;2:927–40.10.1002/cssc.200900104Suche in Google Scholar PubMed
[190] Amphlett JC, Evans MJ, Mann RF, Weir RD. Hydrogen production by the catalytic steam reforming of methanol: part 2: kinetics of methanol decomposition using girdler G66B catalyst. Can J Chem Engineering. 1985;63:605–11.10.1002/cjce.5450630412Suche in Google Scholar
[191] Bartoň J, Pour V. Kinetics of catalytic conversion of methanol at higher pressures. Collect Czechoslov Chem Commun. 1980;45:3402–7.10.1135/cccc19803402Suche in Google Scholar
[192] Pour V, Bartoň J, Benda A. Kinetics of catalyzed reaction of methanol with water vapour. Collect Czechoslov Chem Commun. 1975;40:2923–34.10.1135/cccc19752923Suche in Google Scholar
[193] Santacesaria E, Carrá S. Kinetics of catalytic steam reforming of methanol in a CSTR reactor. Appl Catal. 1983;5:345–58.10.1016/0166-9834(83)80162-6Suche in Google Scholar
[194] Geissler K, Newson E, Vogel F, Truong T-B, Hottinger P, Wokaun A. Autothermal methanol reforming for hydrogen production in fuel cell applications. Phys Chem Chem Phys. 2001;3:289–93.10.1039/b004881jSuche in Google Scholar
[195] Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, et al. Production of hydrogen from oxidative steam reforming of methanol. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts. J Catal. 2004;228:56–65.10.1016/S0021-9517(04)00411-7Suche in Google Scholar
[196] Agrell J, Birgersson H, Boutonnet M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Pow Sour. 2002;106:249–57.10.1016/S0378-7753(01)01027-8Suche in Google Scholar
[197] Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl Catal. 1982;2:363–6.10.1016/0166-9834(82)80154-1Suche in Google Scholar
[198] Jiang CJ, Trimm DL, Wainwright MS, Cant NW. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Appl Catal A: General. 1993;97:145–58.10.1016/0926-860X(93)80081-ZSuche in Google Scholar
[199] Jiang CJ, Trimm DL, Wainwright MS, Cant NW. Kinetic study of steam reforming of methanol over copper-based catalysts. Appl Catal A: General. 1993;93:245–55.10.1016/0926-860X(93)85197-WSuche in Google Scholar
[200] Breen JP, Ross JR. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catal Today. 1999;51:521–33.10.1016/S0920-5861(99)00038-3Suche in Google Scholar
[201] Peppley BA, Amphlett JC, Kearns LM, Mann RF. Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Appl Catal A: General. 1999;179:31–49.10.1016/S0926-860X(98)00299-3Suche in Google Scholar
[202] Peppley BA, Amphlett JC, Kearns LM, Mann RF. Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A: General. 1999;179:21–9.10.1016/S0926-860X(98)00298-1Suche in Google Scholar
[203] Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals. Catal Today. 1997;36:45–56.10.1016/S0920-5861(96)00195-2Suche in Google Scholar
[204] Shishido T, Yamamoto Y, Morioka H, Takehira K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming. J Mol Catal A: Chemical. 2007;268:185–94.10.1016/j.molcata.2006.12.018Suche in Google Scholar
[205] Rabe S, Vogel F. A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst. Appl Catal B: Environmental. 2008;84:827–34.10.1016/j.apcatb.2008.06.016Suche in Google Scholar
[206] Murcia-Mascaros S, Navarro RM, Gomez-Sainero L, Costantino U, Nocchetti M, Fierro JL. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors. J Catal. 2001;198:338–47.10.1006/jcat.2000.3140Suche in Google Scholar
[207] Agrell J, Boutonnet M, Fierro JL. Production of hydrogen from methanol over binary Cu/ZnO catalysts. Appl Catal A: General. 2003;253:213–23.10.1016/S0926-860X(03)00521-0Suche in Google Scholar
[208] Agrell J. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J Catal. 2003;219:389–403.10.1016/S0021-9517(03)00221-5Suche in Google Scholar
[209] Frank B, Jentoft F, Soerijanto H, Kröhnert J, Schlögl R, Schomäcker R. Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics. J Catal. 2007;246:177–92.10.1016/j.jcat.2006.11.031Suche in Google Scholar
[210] Sá S, Silva H, Brandão L, Sousa JM, Mendes A. Catalysts for methanol steam reforming – a review. Appl Catal B: Environmental. 2010;99:43–57.10.1016/j.apcatb.2010.06.015Suche in Google Scholar
[211] Matsumura Y, Ishibe H. Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst. J Catal. 2009;268:282–9.10.1016/j.jcat.2009.09.026Suche in Google Scholar
[212] Matter P. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts. J Catal. 2004;223:340–51.10.1016/j.jcat.2004.01.031Suche in Google Scholar
[213] Chen C-C, Jeng M-S, Leu C-H, Yang C-C, Lin Y-L, King S-C, et al. Low-level CO in hydrogen-rich gas supplied by a methanol processor for PEMFCs. Chem Eng Sci. 2011;66:5095–106.10.1016/j.ces.2011.07.002Suche in Google Scholar
[214] Ayalur Chattanathan S, Adhikari S, Abdoulmoumine N. A review on current status of hydrogen production from bio-oil. Renew Sus Energy Rev. 2012;16:2366–72.10.1016/j.rser.2012.01.051Suche in Google Scholar
[215] Conant T, Karim A, Lebarbier V, Wang Y, Girgsdies F, Schlögl R, et al. Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal. 2008;257:64–70.10.1016/j.jcat.2008.04.018Suche in Google Scholar
[216] Ma Y, Guan G, Shi C, Zhu A, Hao X, Wang Z, et al. Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. Int J Hydrogen Energy. 2014;39:258–66.10.1016/j.ijhydene.2013.09.150Suche in Google Scholar
[217] Cao J, Ma Y, Guan G, Hao X, Ma X, Wang Z, et al. Reaction intermediate species during the steam reforming of methanol over metal modified molybdenum carbide catalysts. Appl Catal B: Environmental. 2016;189:12–8.10.1016/j.apcatb.2016.02.021Suche in Google Scholar
[218] Kameoka S, Tanabe T, Tsai AP. Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity. Catal Lett. 2005;100:89–93.10.1007/s10562-004-3091-zSuche in Google Scholar
[219] Tanaka Y, Kikuchi R, Takeguchi T, Eguchi K. Steam reforming of dimethyl ether over composite catalysts of γ-Al2O3 and Cu-based spinel. Appl Catal B: Environmental. 2005;57:211–22.10.1016/j.apcatb.2004.11.007Suche in Google Scholar
[220] Faungnawakij K, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K. Cu-based spinel catalysts CuB2O4 (B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether. Appl Catal A: General. 2008;341:139–45.10.1016/j.apcata.2008.02.039Suche in Google Scholar
[221] Faungnawakij K, Kikuchi R, Shimoda N, Fukunaga T, Eguchi K. Effect of thermal treatment on activity and durability of CuFe2O4–Al2O3 composite catalysts for steam reforming of dimethyl ether. Angew Chem Int Ed. 2008;47:9314–7.10.1002/anie.200802809Suche in Google Scholar
[222] Kurtz M, Wilmer H, Genger T, Hinrichsen O, Muhler M. Deactivation of supported copper catalysts for methanol synthesis. Catal Lett. 2003;86:77–80.10.1023/A:1022663125977Suche in Google Scholar
[223] Cao W, Chen G, Li S, Yuan Q. Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst. Chem Eng J. 2006;119:93–8.10.1016/j.cej.2006.03.008Suche in Google Scholar
[224] Valdés-Solís T, Marbán G, Fuertes AB. Nanosized catalysts for the production of hydrogen by methanol steam reforming. Catal Today. 2006;116:354–60.10.1016/j.cattod.2006.05.063Suche in Google Scholar
[225] Roduner E. Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions – a tutorial. Catal Today. 2017;309:263–26810.1016/j.cattod.2017.05.091Suche in Google Scholar
[226] Trincado M, Banerjee D, Grützmacher H. Molecular catalysts for hydrogen production from alcohols. Energy Environ Sci. 2014;7:2464–503.10.1039/C4EE00389FSuche in Google Scholar
[227] Cheung K, Wong W, Ma D, Lai T, Wong K. Transition metal complexes as electrocatalysts – development and applications in electro-oxidation reactions. Coordin Chem Rev. 2007;251:2367–85.10.1016/j.ccr.2007.04.004Suche in Google Scholar
[228] Andrieux CP, Dumas-Bouchiat JM, Savéant JM. Homogeneous redox catalysis of electrochemical reactions. J Electroanal Chem Interfacial Electrochem. 1978;87:39–53.10.1016/S0022-0728(78)80378-7Suche in Google Scholar
[229] Liu Y, Zhao S-F, Guo S-X, Bond AM, Zhang J, Zhu G, et al. Electrooxidation of ethanol and methanol using the molecular catalyst [{Ru 4O4(OH) 2(H2O) 4}(γ-SiW 10O 36) 2] 10–. J Am Chem Soc. 2016;138:2617–28.10.1021/jacs.5b11408Suche in Google Scholar PubMed
[230] Serra D, Correia MC, McElwee-White L. Iron and ruthenium heterobimetallic carbonyl complexes as electrocatalysts for alcohol oxidation: electrochemical and mechanistic studies. Organometallics. 2011;30:5568–77.10.1021/om101070zSuche in Google Scholar
[231] Nomura K, Saito Y, Shinda S. Photoenhanced catalytic dehydrogenation of methanol with tin(II)-coordinated iridium complexes. J Mol Catal. 1989;50:303–13.10.1016/0304-5102(89)80287-1Suche in Google Scholar
[232] Wakizaka M, Matsumoto T, Tanaka R, Chang H-C. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts. Nat Commun. 2016;7:12333.10.1038/ncomms12333Suche in Google Scholar PubMed
[233] Dobscn A, Robinson SD. Catalytic dehydrogenation of primary and secondary alcohols by Ru(OCOCF3)2(CO)(PPh3)2. J Organomet Chem. 1975;87:C52–3.10.1016/S0022-328X(00)88159-0Suche in Google Scholar
[234] Dobson A, Robinson SD. Complexes of the platinum metals. 7. Homogeneous ruthenium and osmium catalysts for the dehydrogenation of primary and secondary alcohols. Inorg Chem. 1977;16:137–42.10.1021/ic50167a029Suche in Google Scholar
[235] Shinoda S, Itagaki H, Saito Y. Dehydrogenation of methanol in the liquid phase with a homogeneous ruthenium complex catalyst. J Chem Soc, Chem Commun. 1985;0:860–1.10.1039/c39850000860Suche in Google Scholar
[236] Itagaki H, Saito Y, Shinoda S. Transition metal homogeneous catalysis for liquidphase dehydrogenation of methanol. J Mol Catal. 1987;41:209–20.10.1016/0304-5102(87)80029-9Suche in Google Scholar
[237] Morton D, Cole-Hamilton DJ. Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2′-bipyridyl)2]Cl. J Chem Soc, Chem Commun. 1987;0:248–9.10.1039/C39870000248Suche in Google Scholar
[238] Morton D, Cole-Hamilton DJ. Molecular hydrogen complexes in catalysis: highly efficient hydrogen production from alcoholic substrates catalysed by ruthenium complexes. J Chem Soc, Chem Commun. 1988;0:1154–6.10.1039/c39880001154Suche in Google Scholar
[239] Yang L-C, Ishida T, Yamakawa T, Shinoda S. Mechanistic study on dehydrogenation of methanol with [RuCl2(PR3)3]-type catalyst in homogeneous solutions. J Mol Catalysis A: Chem. 1996;108:87–93.10.1016/1381-1169(96)00003-9Suche in Google Scholar
[240] Sieffert N, Hydrogen BM. Generation from alcohols catalyzed by ruthenium−triphenylphosphine complexes: multiple reaction pathways. J Am Chem Soc. 2010;132:8056–70.10.1021/ja101044cSuche in Google Scholar PubMed
[241] Nielsen MM, Alberico EE, Baumann WW, Drexler H-J, Junge HH, Gladiali SS, et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature. 2013;495:85–9.10.1038/nature11891Suche in Google Scholar PubMed
[242] Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Nat Chem. 2013;5:342–7.10.1038/nchem.1595Suche in Google Scholar PubMed
[243] Grützmacher H. Cooperating ligands in catalysis. Angew Chem Int Ed Engl. 2008;47:1814–8.10.1002/anie.200704654Suche in Google Scholar PubMed
[244] Khusnutdinova JR, Milstein D. Metal-Ligand Cooperation. Angew Chem Int Ed. 2015;54:12236–73.10.1002/anie.201503873Suche in Google Scholar PubMed
[245] Crabtree RH. Multifunctional ligands in transition metal catalysis. New J Chem. 2011;35:18–23.10.1039/C0NJ00776ESuche in Google Scholar
[246] Bertoli M, Choualeb A, Lough AJ, Moore B, Spasyuk D, Gusev DG. Osmium and ruthenium catalysts for dehydrogenation of alcohols. Organometallics. 2011;30:3479–82.10.1021/om200437nSuche in Google Scholar
[247] Spasyuk D, Smith S, Gusev DG. From esters to alcohols and back with ruthenium and osmium catalysts. Angew Chem Int Ed. 2012;51:2772–5.10.1002/anie.201108956Suche in Google Scholar PubMed
[248] Nielsen M, Junge H, Kammer A, Beller M. Towards a green process for bulk‐scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed. 2012;51:5711–3.10.1002/anie.201200625Suche in Google Scholar PubMed
[249] Sinha V, Pribanic B, Trincado M, De Bruin B, Gruetzmacher H. Ligand- and metal-based reactivity of a neutral ruthenium diolefin diazadiene complex; the innocent, the guilty, and the suspicious. Chem Eur J. 2018. in press. DOI: 10.1002/chem.201705957.Suche in Google Scholar PubMed PubMed Central
[250] Yang X. Mechanistic insights into ruthenium-catalyzed production of H2 and CO2 from methanol and water: a DFT study. ACS Catalysis. 2014;4:1129–33.10.1021/cs500061uSuche in Google Scholar
[251] Lei M, Pan Y, Ma X. The nature of hydrogen production from aqueous‐phase methanol dehydrogenation with ruthenium pincer complexes under mild conditions. Eur J Inorg Chem. 2015;2015:794–803.10.1002/ejic.201403027Suche in Google Scholar
[252] Dub PA, Gordon JC. Metal–ligand bifunctional catalysis: the “Accepted” mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles involving hydrogen atoms. ACS Catal. 2017;7:6635–55.10.1021/acscatal.7b01791Suche in Google Scholar
[253] Monney A, Barsch E, Sponholz P, Junge H, Ludwig R, Beller M. Base-free hydrogen generation from methanol using a bi-catalytic system. Chem Commun (Camb). 2014;50:707–9.10.1039/C3CC47306FSuche in Google Scholar PubMed
[254] Hu P, Diskin-Posner Y, Ben-David Y, Milstein D. Reusable homogeneous catalytic system for hydrogen production from methanol and water. ACS Catal. 2014;4:2649–52.10.1021/cs500937fSuche in Google Scholar
[255] Campos J, Sharninghausen LS, Manas MG, Crabtree RH. Methanol dehydrogenation by Iridium N-heterocyclic carbene complexes. Inorg Chem. 2015;54:5079–84.10.1021/ic502521cSuche in Google Scholar PubMed
[256] Fujita K-I, Kawahara R, Aikawa T, Yamaguchi R. Hydrogen production from a methanol-water solution catalyzed by an anionic iridium complex bearing a functional bipyridonate ligand under weakly basic conditions. Angew Chem Int Ed. 2015;54:9057–60.10.1002/anie.201502194Suche in Google Scholar PubMed
[257] Heim LE, Thiel D, Gedig C, Deska J, Prechtl MH. Bioinduced room-temperature methanol reforming. Angew Chem Int Ed. 2015;54:10308–12.10.1002/anie.201503737Suche in Google Scholar PubMed
[258] Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler H-J, Baumann W, et al. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem. 2013;125:14412–6.10.1002/ange.201307224Suche in Google Scholar
[259] Chakraborty S, Brennessel WW, Jones WD. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J Am Chem Soc. 2014;136:8564–7.10.1021/ja504523bSuche in Google Scholar PubMed
[260] Bornschein C, Werkmeister S, Wendt B, Jiao H, Alberico E, Baumann W, et al. Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex. Nat Commun. 2014;5:1193.10.1038/ncomms5111Suche in Google Scholar PubMed
[261] Bielinski EA, Lagaditis PO, Zhang Y, Mercado BQ, Würtele C, Bernskoetter WH, et al. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. J Am Chem Soc. 2014;136:10234–7.10.1021/ja505241xSuche in Google Scholar PubMed
[262] Chakraborty S, Lagaditis PO, Förster M, Bielinski EA, Hazari N, Holthausen MC, et al. Well-defined iron catalysts for the acceptorless reversible dehydrogenation-hydrogenation of alcohols and ketones. ACS Catal. 2014;4:3994–4003.10.1021/cs5009656Suche in Google Scholar
[263] (a) Valyaev DA, Lavigne G, Lugan N. Manganese organometallic compounds in homogeneous catalysis: past, present, and prospects. Coordin Chem Rev. 2016;308:191–235. (b) Zell T, Langer R. From ruthenium to iron and manganese – a mechanistic view on challenges and design principles of base metal hydrogenation catalysts. Chem Cat Chem. 2017. DOI: 10.1002/cctc.201701722.Suche in Google Scholar
[264] Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, et al. Selective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexes. J Am Chem Soc. 2016;138:8809–14.10.1021/jacs.6b03709Suche in Google Scholar PubMed
[265] Mastalir M, Glatz M, Gorgas N, Stöger B, Pittenauer E, Allmaier G, et al. Divergent coupling of alcohols and amines catalyzed by isoelectronic hydride Mn Iand Fe IIPNP pincer complexes. Chem-Eur J. 2016;22:12316–20.10.1002/chem.201603148Suche in Google Scholar PubMed
[266] Mukherjee A, Nerush A, Leitus G, Shimon LJ, Ben-David Y, Jalapa NA, et al. Manganese-catalyzed environmentally benign dehydrogenative coupling of alcohols and amines to form aldimines and H2: a catalytic and mechanistic study. J Am Chem Soc. 2016;138:4298–301.10.1021/jacs.5b13519Suche in Google Scholar PubMed
[267] Tondreau AM, Boncella JM. 1,2-addition of formic or oxalic acid to –N{CH2CH2(PiPr2)}2-supported Mn(I) dicarbonyl complexes and the manganese-mediated decomposition of formic acid. Organometallics. 2016;35:2049–52.10.1021/acs.organomet.6b00274Suche in Google Scholar
[268] Vijjamarri S, Chidara VK, Rousova J, Du G. Dehydrogenative coupling of alcohols and carboxylic acids with hydrosilanes catalyzed by a salen–Mn(V) complex. Catal Sci Technol. 2016;6:3886–92.10.1039/C5CY01912ESuche in Google Scholar
[269] Kallmeier F, Irrgang T, Dietel T, Kempe R. Highly active and selective manganese C=O bond hydrogenation catalysts: the importance of the multidentate ligand, the ancillary ligands, and the oxidation state. Angew Chem Int Ed. 2016;55:11806–9.10.1002/anie.201606218Suche in Google Scholar PubMed
[270] Elangovan S, Neumann J, Sortais J-B, Junge K, Darcel C, Beller M. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nat Commun. 2016;7:12641.10.1038/ncomms12641Suche in Google Scholar PubMed PubMed Central
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Nanomaterials: Electrochemical Properties and Application in Sensors
- CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol
- Transition metal-catalyzed dehydrogenation of amines
- Optical properties of monolayer BeC under an external electric field: A DFT approach
- Archaeological investigations (archaeometry)
- Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus
Artikel in diesem Heft
- Nanomaterials: Electrochemical Properties and Application in Sensors
- CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol
- Transition metal-catalyzed dehydrogenation of amines
- Optical properties of monolayer BeC under an external electric field: A DFT approach
- Archaeological investigations (archaeometry)
- Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus