Home Optical properties of monolayer BeC under an external electric field: A DFT approach
Article
Licensed
Unlicensed Requires Authentication

Optical properties of monolayer BeC under an external electric field: A DFT approach

  • Suman Chowdhury and Debnarayan Jana EMAIL logo
Published/Copyright: June 13, 2018
Become an author with De Gruyter Brill

Abstract

BeC, a two-dimensional hypercoordinated nanostructure carbon compound, has been the focus of the nanoworld because of its high value of dynamical stability, in-plane stiffness, carrier mobility and the existence of band gap. In this work, we have explored the electronic and the optical properties of this material under the influence of static external perpendicular electric field within the framework of density functional theory. Under the influence of a uniform electric field, the band gap changes within the meV range. The electron energy loss function study reveals that this material has optical band gaps which remain constant irrespective of the applied electric field strength. The optical property also exhibits interesting features when the applied field strength is within 0.4–0.5 V/Å. We have also tried to explain the optical data from the respective band structures and thus paving the way to understand qualitatively the signature of the optical anisotropy from the birefringence study.

References

[1] Geim AK. Nobel lecture: Random walk to graphene. Rev Mod Phys. 2011;83:851–862.10.1103/RevModPhys.83.851Search in Google Scholar

[2] Geim AK. Graphene: status and prospects. Science. 2009;324:1530–4.10.1126/science.1158877Search in Google Scholar PubMed

[3] Novoselov KS. Nobel lecture: Graphene: Materials in the flatland. Rev Mod Phys. 2011;83:837–49.10.1103/RevModPhys.83.837Search in Google Scholar

[4] Neto A, Guinea F, Peres N, Novoselov K, Geim A. The electronic properties of graphene. Rev Mod Phys. 2008;81:109 (54pp).10.1103/RevModPhys.81.109Search in Google Scholar

[5] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896Search in Google Scholar PubMed

[6] Nath P, Sanyal D, Jana D.. Semi-metallic to semiconducting transition in graphene nanosheet with site specific co-doping of boron and nitrogen. Physica E. 2014;56:64–68.10.1016/j.physe.2013.07.009Search in Google Scholar

[7] Nath P, Chowdhury S, Sanyal D, Jana D.. Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet. Carbon. 2014;73:275–282.10.1016/j.carbon.2014.02.064Search in Google Scholar

[8] Shinde PP, Kumar V.. Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys Rev B. 2011;84:125 401–06.10.1103/PhysRevB.84.125401Search in Google Scholar

[9] Rani P, Kumar VK.. Designing band gap of graphene by B and N dopant atoms. RSC Adv. 2013;3:802–812.10.1039/C2RA22664BSearch in Google Scholar

[10] Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Chemical functionalization of graphene and its applications. Prog Mater Sci. 2012;57:1061–1105.10.1016/j.pmatsci.2012.03.002Search in Google Scholar

[11] Woinska M, Milowska KZ, Majewski JA. Electronic structure of graphene functionalized with boron and nitrogen. Phys Status Solidi C. 2013;10:1167–71.10.1002/pssc.201200911Search in Google Scholar

[12] Thakur J, Saini SH, Singh M, et al. The electronic and magnetic properties of B-doping Stone-Wales defected graphene decorated with transition-metal atoms. Physica E. 2016;78:35–40.10.1016/j.physe.2015.11.037Search in Google Scholar

[13] Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano. 2008;2:2301–2305.10.1021/nn800459eSearch in Google Scholar PubMed

[14] Chowdhury S, Baidya S, Nafday D, et al. A real-space study of random extended defects in solids: Application to disordered stone-wales defects in graphene. Physica E. 2014;61:191–197.10.1016/j.physe.2014.04.002Search in Google Scholar

[15] Chowdhury S, Jana D, Mookerjee A. Conductance of disordered graphene sheets: A real space approach. Physica E. 2015;74:347–354.10.1016/j.physe.2015.07.019Search in Google Scholar

[16] Chowdhury S, Jana D, Sadhukhan B, et al. Configuration and self-averaging in disordered systems. Ind J Phys. 2016;90:649–657.10.1007/s12648-015-0789-2Search in Google Scholar

[17] Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett. 2009;102:236,804.10.1103/PhysRevLett.102.236804Search in Google Scholar PubMed

[18] Majumdar A, Chowdhury S, Nath P, Jana D. Defect induced magnetism in planar silicene: a first principles study. RSC Adv. 2014;4:32,221–32,227.10.1039/C4RA04174GSearch in Google Scholar

[19] Das R, Chowdhury S, Majumdar A, Jana D. Optical properties of p and al doped silicene: a first principles study. RSC Adv. 2014;5:41–50.10.1039/C4RA07976KSearch in Google Scholar

[20] Chowdhury S, Nath P, Jana D. Shape dependent magnetic and optical properties in silicene nanodisks: A first principles study. J Phys Chem Solid. 2015;83:32–39.10.1016/j.jpcs.2015.03.017Search in Google Scholar

[21] Chowdhury S, Jana D. A theoretical review on electronic, magnetic and optical properties of silicene. Rep Prog Phys. 2016;79:126,501 (57pp).10.1088/0034-4885/79/12/126501Search in Google Scholar PubMed

[22] Vogt P, Padova PD, Quaresima C, et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett. 2012;108:155,501.10.1103/PhysRevLett.108.155501Search in Google Scholar PubMed

[23] Kamal C, Banerjee A, Chakrabarti A. Properties of two-dimensional silicon versus carbon systems. USA: CRC Press, 2016.Search in Google Scholar

[24] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J. Tunable bandgap in silicene and germanene. Nano Lett. 2012;12:113.10.1021/nl203065eSearch in Google Scholar PubMed

[25] Drummond ND, Zolyomi V, Falko VI. Electrically tunable band gap in silicene. Phys Rev B. 2012;85:075,423 (7pp).10.1103/PhysRevB.85.075423Search in Google Scholar

[26] Ezawa M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys. 2012;14:033,003 (11pp).10.1088/1367-2630/14/3/033003Search in Google Scholar

[27] Yang LM, Ganz E, Chen Z, Wang ZX, v R Schleyer P. Four decades of the chemistry of planar hypercoordinate compounds. Angew Chem Int Ed. 2015;54:9468–9501.10.1002/anie.201410407Search in Google Scholar PubMed

[28] Keese R.. Carbon flatland: Planar Tetracoordinate Carbon and Fenestranes. Chem Rev. 2006;106:4787–4808.10.1021/cr050545hSearch in Google Scholar PubMed

[29] Merino G, Mendez-Rojas MA, Vela A, Heine T. Recent advances in planar tetracoordinate carbon chemistry. J Comput Chem. 2007;28:362–372.10.1002/jcc.20515Search in Google Scholar PubMed

[30] Hoffmann R, Alder RW, Wilcox CF. Planar tetracoordinate carbon. J Am Chem Soc. 1970;92:4992–4993.10.1021/ja00719a044Search in Google Scholar

[31] Li X, Wang LS, Boldyrev AI, Simons J. Tetracoordinated planar carbon in the Al4C- Anion. A Combined Photoelectron Spectroscopy and Ab Initio Study. J Am Chem Soc. 1999;121:6033–6038.10.1021/ja9906204Search in Google Scholar

[32] Pei Y, An W, Ito K, v R Schleyer P, Zeng XC. Planar pentacoordinate carbon in CAl5+: A Global Minimum. J Am Chem Soc. 2008;130:10,394–10,400.10.1021/ja803365xSearch in Google Scholar PubMed

[33] Averkiev BB, Zubarev DY, Wang LM, Huang W, Wang LS, Boldyrev AI. Carbon Avoids Hypercoordination in CB6-, CB62-, and C2B5- Planar Carbon-Boron Clusters. J Am Chem Soc. 2008;130:9248–9250.10.1021/ja801211pSearch in Google Scholar PubMed

[34] Wang ZX, Zhang CG, Chen ZF, v R Schleyer P. Planar Tetracoordinate Carbon Species Involving Beryllium Substituents. Inorg Chem. 2008;47:1332–1336.10.1021/ic7017709Search in Google Scholar PubMed

[35] Jimenez-Halla JOC, Wu YB, Wang ZX, Islas R, Heine T, Merino G. CAl4Be and CAl3Be2-: global minima with a planar pentacoordinate carbon atom. Chem Commun. 2010;46:8776–8778.10.1039/c0cc03479gSearch in Google Scholar PubMed

[36] Grande-Aztatzi R, Cabellos JL, Islas R, Infante I, Mercero JM, Restrepo A, Merino G. Planar pentacoordinate carbons in C Be54- derivatives. Phys Chem Chem Phys. 2015;17:4620–4624.10.1039/C4CP05659KSearch in Google Scholar PubMed

[37] Guo JC, Ren GM, Miao CQ, Tian WJ, Wu YB, Wang XT. CBe5Hnn-4(n = 2-5): Hydrogen-Stabilized Be5 Pentagons Containing Planar or Quasi-Planar Pentacoordinate Carbons. J Phys Chem A. 2015;119:13,101–13,106.10.1021/acs.jpca.5b10178Search in Google Scholar PubMed

[38] Li Y, Liao Y, Chen Z. Be(2)C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. Angew Chem Int Ed. 2014;53:7248–7252.10.1002/anie.201403833Search in Google Scholar PubMed

[39] Wang Y, Li F, Li Y, Chen Z. Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poissons ratio. Nat Commun. 2016;7:11,488 (7pp).10.1038/ncomms11488Search in Google Scholar PubMed PubMed Central

[40] Liu CS, Zhu HH, Ye XJ, Yan XH.. Prediction of a new BeC monolayer with perfectly planar tetracoordinate carbons. Nanoscale. 2017;9:5854–5858.10.1039/C7NR00762KSearch in Google Scholar PubMed

[41] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864 – B871.10.1103/PhysRev.136.B864Search in Google Scholar

[42] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133 – A1138.10.1103/PhysRev.140.A1133Search in Google Scholar

[43] Kohn W. Nobel lecture: Electronic structure of matterwave functions and density functionals. Rev Mod Phys. 1999;71:1253–1266.10.1103/RevModPhys.71.1253Search in Google Scholar

[44] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

[45] Ordejon P, Artacho E, Soler JM.. Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 1996 R10,441–R10,444 53.10.1103/PhysRevB.53.R10441Search in Google Scholar

[46] Ordejon P, Artacho E, Soler JM.. Density functional method for very large systems with LCAO basis sets. Int J Quantum Chem. 1997;65:453–461.10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-VSearch in Google Scholar

[47] Soler JM, Artacho E, Gale JD, Garca A, Junquera J, Ordejon P, Sanchez-Portal D. The siesta method for ab initio order-n materials simulation. J Phys Condens Matter. 2002;14:2745–2779.10.1088/0953-8984/14/11/302Search in Google Scholar

[48] Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. ii. operators for fast iterative diagonalization. Phys Rev B. 1993;43:8861–8869.10.1103/PhysRevB.43.1993Search in Google Scholar

[49] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192.10.1103/PhysRevB.13.5188Search in Google Scholar

[50] Jana D, Sun CL, Chen LC, Chen KH. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog Mat Sci. 2013 6;58:565–635.10.1016/j.pmatsci.2013.01.003Search in Google Scholar

[51] Mahan GD. Many Particle Physics. New York: Plenum, 1990.10.1007/978-1-4613-1469-1Search in Google Scholar

[52] Chowdhury S, Das R, Nath P, Jana D, Sanyal D. Electronic and Optical Properties of Boron- and Nitrogen-Functionalized Graphene Nanosheet, Chemical functionalization of Carbon Nanomaterials. Chemistry and Applications ed V K Thakur and M K Thakur, Ch-42. New York: CRC Press. ISBN: 978-1-48-225394-8. 2015:949–957.Search in Google Scholar

[53] Dressel M, Gruner G. Electrodynamics of Solids. UK: Cambridge University Press, 2002.10.1017/CBO9780511606168Search in Google Scholar


Acknowledgment

The authors would like to acknowledge Mr. Arnab Majumdar, Prof. C-S Liu and Prof. X-J Ye for fruitful discussions.


Published Online: 2018-06-13

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0162/html
Scroll to top button