Abstract
The unique properties of nanoparticles make them an extremely valuable modifying material, being used in electrochemical sensors. The features of nanoparticles affect the kinetics and thermodynamics of electrode processes of both nanoparticles and redox reactions occurring on their surface. The paper describes theoretical background and experimental studies of these processes. During the transition from macro- to micro- and nanostructures, the analytical characteristics of sensors modify. These features of metal nanoparticles are related to their size and energy effects, which affects the analytical characteristics of developed sensors. Modification of the macroelectrode with nanoparticles and other nanomaterials reduces the detection limit and improves the degree of sensitivity and selectivity of measurements. The use of nanoparticles as transducers, catalytic constituents, parts of electrochemical sensors for antioxidant detection, adsorbents, analyte transporters, and labels in electrochemical immunosensors and signal-generating elements is described.
Funding statement: The research for this paper was financially supported by the Russian Foundation for Basic Research (Project no. 17-03-00679_А).
References
[1] Будников ГК. Биосенсоры как новый тип аналитических устройств. Соросовский Образовательный Журнал (СОЖ). 1996;12:26–32 (Budnikov HC. Biosensors as a new type of analytical devices. Soros Educ J (SEJ). 1996;12:26–32 (original source in Russian).Suche in Google Scholar
[2] Hernandez-Santos D, Gonzalez-Garcia MB, Garcia AC. Metal-nanoparticles based electroanalysis. Electroanalysis. 2002;14:1225–35.10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-ZSuche in Google Scholar
[3] Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis. 2004;16:19–44.10.1002/elan.200302930Suche in Google Scholar
[4] Riu J, Maroto A, Rius FX. Nanosensors in environmental analysis. Talanta. 2006;69:288–301.10.1016/j.talanta.2005.09.045Suche in Google Scholar PubMed
[5] Huang X-J, Choi Y-K. Chemical sensors based on nanostructured materials. Sens Actuators B. 2007;122:659–71.10.1016/j.snb.2006.06.022Suche in Google Scholar
[6] Vertelov GK, Olenin AYu, Lisichkin GV. Use of nanoparticles in the electrochemical analysis of biological samples. J Anal Chem. 2007;62:813–24.10.1134/S106193480709002XSuche in Google Scholar
[7] Pumera M, Sanchez S, Ichinose I, Tang J. Electrochemical nanobiosensors. Sens Actuators B. 2007;123:1195–205.10.1016/j.snb.2006.11.016Suche in Google Scholar
[8] Xiao Y, Chang ML. Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis. 2008;20:648–62.10.1002/elan.200704125Suche in Google Scholar
[9] Campbell FW, Compton RG. The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem. 2010;396:241–59.10.1007/s00216-009-3063-7Suche in Google Scholar PubMed
[10] Stefan-van-Staden RI, van Staden JF, Balasoiu SC, Vasile OR. Micro- and nanosensors, recent developments and features: a minireview. Anal Lett. 2010;43:1111–8.10.1080/00032710903518534Suche in Google Scholar
[11] Yanez-Sedeno P, Pingarron JM, Riu J, Rius FX. Electrochemical sensing based on carbon nanotubes. TrAC-Trends Anal Chem. 2010;29:939–53.10.1016/j.trac.2010.06.006Suche in Google Scholar
[12] Willner I, Willner B, Tel-Vered R. Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis. 2011;23:13–28.10.1002/elan.201000506Suche in Google Scholar
[13] Siangproh W, Dungchai W, Rattanarat P, Chailapakul O. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Anal Chim Acta. 2011;690:10–25.10.1016/j.aca.2011.01.054Suche in Google Scholar PubMed
[14] Aragay G, Pino F, Merkoci A. Nanomaterials for sensing and destroying pesticides. Chem Rev. 2011;112:5317–38.10.1021/cr300020cSuche in Google Scholar PubMed
[15] Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta. 2012;177:245–70.10.1007/s00604-011-0758-1Suche in Google Scholar
[16] Marin S, Merkoci A. Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis. 2012;24:459–69.10.1002/elan.201100576Suche in Google Scholar
[17] Rassaei L, Marken F, Sillanpaa M, Amiri M, Cirtiu CM, Sillanpaa M. Nanoparticles in electrochemical sensors for environmental monitoring. TrAC-Trends Anal Chem. 2011;30:1704–15.10.1016/j.trac.2011.05.009Suche in Google Scholar
[18] Budnikov HC, Shirokova VI. Term “Nano” in electroanalysis: a trendy prefix or a new stage of its development? J Anal Chem. 2013;68:663–70.10.1134/S1061934813080030Suche in Google Scholar
[19] Brainina KZ, Galperin LG, Galperin AL. Mathematical modeling and numerical simulation of metal nanoparticles electrooxidation. J Solid State Electrochem. 2010;14:981–8.10.1007/s10008-009-0897-zSuche in Google Scholar
[20] Brainina KhZ, Galperin LG, Vikulova EV, et al. Gold nanoparticles electrooxidation: comparison of theory and experiment. J Solid State Electrochem. 2011;15:1049–56.10.1007/s10008-010-1133-6Suche in Google Scholar
[21] Brainina KZ, Galperin LG, Piankova LA, Stozhko NY, Myrzakaev AM, Timoshenkova OR. Bismuth nanoparticles electrooxidation: theory and experiment. J Solid State Electrochem. 2011;15:2469–75.10.1007/s10008-011-1455-zSuche in Google Scholar
[22] Brainina KhZ, Galperin LG, Kiryuhina, Galperin AL, Stozhko NYu, Murzakaev AM. Silver nanoparticles electrooxidation: Theory and experiment. J Solid State Electrochem. 2012;16:2365–72.10.1007/s10008-011-1583-5Suche in Google Scholar
[23] Stozhko NYu, Malakhova NA, Byzov IV, Brainina KhZ. Electrodes in stripping voltammetry: from a macro- to a micro- and nano-structured surface. J Anal Chem. 2009;64:1148–57.10.1134/S1061934809110100Suche in Google Scholar
[24] Брайнина ХЗ, Викулова ЕВ, Стожко НЮ. Наноматериалы: свойства и применение в электрохимических сенсорах.: Под ред. С.Н.Штыкова Нанообъекты и нанотехнолоГии в химическом анализе Наука. 20 т., Москва, 2015, 431 с. (Brainina KhZ, Vikulova EV, Stozhko NY. Nanomaterials: properties and applications in electrochemical sensors. In: Shtykov SN, ed. Nanoobjects and nanotechnologies in chemical analysis. Moscow, Russia, Nauka, 2015:151–207, original source in Russian).Suche in Google Scholar
[25] Dai X, Wildgoose GG, Salter C, Crossley A, Compton RG. Electroanalysis using macro-,micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Anal Chem. 2006;78:6102–8.10.1021/ac060582oSuche in Google Scholar PubMed
[26] Проблемы аналитической химии. Т. 14. Химические сенсоры. Под ред. Ю.Г. Власова. М.: Наука, 2011, 399 с. (Vlasov YuG, ed., Problems of Analytical Chemistry. V. 14. Chemical Sensors. Moscow, Russia, Nauka, 2011, original source in Russian).Suche in Google Scholar
[27] Qi WH, Wang MP. Size and shape dependent melting temperature of metallic nanoparticles. Mater Chem Phys. 2004;88:280–4.10.1016/j.matchemphys.2004.04.026Suche in Google Scholar
[28] Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B. 2007;58:3–7.10.1016/j.colsurfb.2006.08.005Suche in Google Scholar
[29] Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103:4212–17.10.1021/jp984796oSuche in Google Scholar
[30] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–77.10.1021/jp026731ySuche in Google Scholar
[31] Lee K-C, Lin S-J, Lin C-H, Tsai C-S, Lu Y-J. Size effect of Ag nanoparticles on surface plasmon resonance. Surf Coat Technol. 2008;202:5339–42.10.1016/j.surfcoat.2008.06.080Suche in Google Scholar
[32] Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–92.10.1039/b502142cSuche in Google Scholar PubMed
[33] Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK. Catalytic activity of Au nanoparticles. Nano Today. 2007;2:14–8.10.1016/S1748-0132(07)70113-5Suche in Google Scholar
[34] Li Y, Cox JT, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles. J Am Chem Soc. 2010;132:3047–54.10.1021/ja909408qSuche in Google Scholar PubMed
[35] Bukhtiyarov VI, Slin’ko MG. Metallic nanosystems in catalysis. Russ Chem Rev. 2001;70:179–181.10.1070/RC2001v070n02ABEH000637Suche in Google Scholar
[36] Park T-J, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007;7:766–72.10.1021/nl063039wSuche in Google Scholar PubMed
[37] Jiang Q, Liang LH, Zhao DS. Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B. 2001;105:6275–77.10.1021/jp010995nSuche in Google Scholar
[38] Zanchet D, Tolentino H, Alves MCM, Alves OL, Ugarte D. Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chem Phys Lett. 2000;323:167–72.10.1016/S0009-2614(00)00424-3Suche in Google Scholar
[39] Jain PK, Lee KS, El-Sayed IH, El-Sayed MA Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.10.1021/jp057170oSuche in Google Scholar PubMed
[40] Meier J, Schiotz J, Liu P, Norskov JK, Stimming U. Nano-scale effects in electrochemistry. Chem Phys Lett. 2004;390:440–4.10.1016/j.cplett.2004.03.149Suche in Google Scholar
[41] Eftekhari A. Nanostructured Materials in Electrochemistry. Weinheim, John Wiley and Sons, WILEY-VCH Verlag GmbH & Co. KGaA, 2008.10.1002/9783527621507Suche in Google Scholar
[42] Belding SR, Campbell FW, Dickinson EJF, Compton RG. Nanoparticle-modified electrodes. Phys Chem Chem Phys. 2010;12:11208–21.10.1039/c0cp00233jSuche in Google Scholar PubMed
[43] Plieth WJ. Electrochemical properties of small clusters of metal atoms and their role in surface enhanced Raman scattering. J Phys Chem. 1982;86:3166–70.10.1021/j100213a020Suche in Google Scholar
[44] Plieth WJ. The work function of small metal particles and its relation to electrochemical properties. Surf Sci. 1985;156:530–5.10.1016/0039-6028(85)90615-6Suche in Google Scholar
[45] Chaki NK, Sharma J, Mandle AB, Mulla IS, Pasrichab R, Vijayamohanan K. Size dependent redox behavior of monolayer protected silver nanoparticles (2–7 nm) in aqueous medium. Phys Chem Chem Phys. 2004;6:1304–9.10.1039/B312643ASuche in Google Scholar
[46] Jones SEW, Campbell FW, Baron R, Xiao L, Compton RG. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: theory and experiment. J Phys Chem C. 2008;112:17820–7.10.1021/jp807093qSuche in Google Scholar
[47] Cruickshank AC, Downard AJ. Electrochemical stability of citrate-capped gold nanoparticles electrostatically assembled on amine-modified glassy carbon. Electrochim Acta. 2009;54:5566–70.10.1016/j.electacta.2009.04.060Suche in Google Scholar
[48] Abdullin TI, Bondar OV, Nikitina II et al. Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes. Bioelectrochemistry 2009;77:37–42.10.1016/j.bioelechem.2009.06.002Suche in Google Scholar PubMed
[49] Karami H, Kafi B, Mortazavi SN. Effect of particle size on the cyclic voltammetry parameters of nanostructured lead dioxide. Int J Electrochem Sci. 2009;4:414–24.Suche in Google Scholar
[50] Ivanova OS, Zamborini FP. Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc. 2010;132:70–2.10.1021/ja908780gSuche in Google Scholar PubMed
[51] Ivanova OS, Zamborini FP. Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte. Anal Chem. 2010;82:5844–50.10.1021/ac101021qSuche in Google Scholar PubMed
[52] Tang L, Han B, Persson K, et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J Am Chem Soc. 2010;132:596–600.10.1021/ja9071496Suche in Google Scholar PubMed
[53] Коршунов АВ, Превезенцева ДО, Коновчук ТВ, Миронец ЕВ. Влияние дисперсного состава золей серебра и золота на их электрохимическую активность. Известия ТПУ., 2010;317:6–13. (Korshunov AV, Prevezentceva DO, Konovchuk TV, Mironetc EV. The effect of the dispersed composition of silver and gold sols on their electrochemical activity. Izvestiya TPU, 2010;317:6–13, original source in Russian).Suche in Google Scholar
[54] Lakbub J, Pouliwe A, Kamasah A, Yang C, Sun P. Electrochemical behaviors of single gold nanoparticles. Electroanalysis. 2011;23:2270–4.10.1002/elan.201100318Suche in Google Scholar
[55] Masitas RA, Khachian IV, Bill BL, Zamborini FP. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles. Langmuir. 2014;30:13075–84.10.1021/la5029614Suche in Google Scholar PubMed
[56] Masitas RA, Zamborini FP. Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. J Am Chem Soc. 2012;134:5014–17.10.1021/ja2108933Suche in Google Scholar PubMed
[57] Kumar A, Buttry DA. Size-dependent anodic dissolution of water-soluble palladium nanoparticles. J Phys Chem C. 2013;117:26783–9.10.1021/jp408394hSuche in Google Scholar
[58] Toh HS, Batchelor-McAuley C, Tschulik K, Uhlemann M, Crossley A, Compton RG. The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale. 2013;5:4884–93.10.1039/c3nr00898cSuche in Google Scholar PubMed
[59] Tang L, Li X, Cammarata RC, Friesen C, Sieradzki K. Electrochemical stability of elemental metal nanoparticles. J Am Chem Soc. 2010;132:11722–6.10.1021/ja104421tSuche in Google Scholar PubMed
[60] Redmond PL, Hallock AJ, Brus LE. Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett. 2005;5:131–5.10.1021/nl048204rSuche in Google Scholar PubMed
[61] Henglein A.Remarks on the electrochemical potential of small silver clusters in aqueous-solution. Ber Bunsenges Phys Chem. 1990;94:600–3.10.1002/bbpc.19900940513Suche in Google Scholar
[62] Henglein A, Mulvaney P, Linnert T. Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss. 1991;92:31–44.10.1039/fd9919200031Suche in Google Scholar
[63] Kolb DM, Ullmann R, Ziegler JC. Electrochemical nanostructuring. Electrochim Acta. 1998;43:2751–60.10.1016/S0013-4686(98)00016-4Suche in Google Scholar
[64] Kolb DM, Engelmann GE, Ziegler JC. On the unusual electrochemical stability of nanofabricated copper clusters. Angew Chem Int Ed. 2000;39:1123–25.10.1002/(SICI)1521-3773(20000317)39:6<1123::AID-ANIE1123>3.0.CO;2-#Suche in Google Scholar
[65] Ng KH, Liu H, Penner RM. Subnanometer silver clusters exhibiting unexpected electrochemical metastability on graphite. Langmuir. 2000;16:4016–23.10.1021/la9914716Suche in Google Scholar
[66] Del Popolo MG, Leiva EPM, Mariscal M, Schmickler W. The basis for the formation of stable metal clusters on an electrode surface. Nanotechnology. 2003;14:1009–13.10.1088/0957-4484/14/9/314Suche in Google Scholar
[67] Brainina KhZ, Neyman E. V. 126. Electroanalytical Stripping Methods. Winefordner JD, ed. New York, Wiley, 1993. p. 198.Suche in Google Scholar
[68] Brainina KZ, Galperin LG, Bukharinova MA, Stozhko NY. Mathematical modeling and experimental study of electrode processes. J Solid State Electrochem. 2014;19:599–606.10.1007/s10008-014-2642-5Suche in Google Scholar
[69] Brainin, KZ, Stozhko NY, Bukharinova MA, Galperin LG, Vidrevich MB, Murzakaev AM. Mathematical modeling and experimental data of the oxidation of ascorbic acid on electrodes modified by nanoparticles. J Solid State Electrochem. 2016;20:2323–30.10.1007/s10008-016-3249-9Suche in Google Scholar
[70] Cui Y, Yang C, Pu W, Oyama M, Zhang J. The influence of gold nanoparticles on simultaneous determination of uric acid and ascorbic acid. Anal Lett. 2009;43:22–33.10.1080/00032710903201925Suche in Google Scholar
[71] Kumar Jena B, Retna Raj C. Morphology dependent electrocatalytic activity of Au nanoparticles. Electrochem Commun. 2008;10:951–4.10.1016/j.elecom.2008.04.023Suche in Google Scholar
[72] Liu GD, Lin YY, Wu H, Lin Y. Voltammetric detection of Cr(VI) with disposable screen-printed electrode modified with gold nanoparticles. Environ Sci Technol. 2007;41:8129–34.10.1021/es071726zSuche in Google Scholar PubMed
[73] Saturno J, Valera D, Carrero H, Fernandez L. Electroanalytical detection of Pb, Cd and traces of Cr at micro/nano-structured bismuth film electrodes. Sens Actuators, B. 2011;159:92–6.10.1016/j.snb.2011.06.055Suche in Google Scholar
[74] Lee G-J, Kim CK, Lee MK, Rhee CK. Simultaneous voltammetric determination of Zn, Cd and Pb at bismuth nanopowder electrodes with various particle size distributions. Electroanalysis. 2010;22:530–5.10.1002/elan.200900356Suche in Google Scholar
[75] Piankova LA, Malakhova NA, Stozhko NYu, Brainina KhZ, Murzakaev AM, Timoshenkova OR. Bismuth nanoparticles in adsorptive stripping voltammetry of nickel. Electrochem Commun. 2011;13:981–4.10.1016/j.elecom.2011.06.017Suche in Google Scholar
[76] Vikulova EV, Malakhova NA, Stozhko NYu, Kolydina LI, Brainina KhZ. Electrochemical sensor based on gold nanoparticles for determination of traces of arsenic (III) and copper (II). Chem Sens. 2011;1:1–7.Suche in Google Scholar
[77] Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis. 2012;24:798–806.10.1002/elan.201100555Suche in Google Scholar
[78] Pereira FC, Moretto LM, De Leo M, Boldrin Zanoni MV, Ugo P. Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Anal Chim Acta. 2006;575:16–24.10.1016/j.aca.2006.05.056Suche in Google Scholar PubMed
[79] Stradiotto NR, Toghill KE, Xiao L, Moshar A, Compton RG. The fabrication and characterization of a nickel nanoparticle modified boron doped diamond electrode for electrocatalysis of primary alcohol oxidation. Electroanalysis. 2009;21:2627–33.10.1002/elan.200900325Suche in Google Scholar
[80] Welch CM, Nekrassova O, Dai X, Hyde ME, Compton RG. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes. ChemPhysChem. 2004;5:1405–10.10.1002/cphc.200400263Suche in Google Scholar PubMed
[81] Malakhova NA, Stozhko NYu, Brainina KZ. Novel approach to bismuth modifying procedure for voltammetric thick film carbon containing electrodes. Electrochem Commun. 2007;9:221–7.10.1016/j.elecom.2006.09.003Suche in Google Scholar
[82] Kalimuthhu P, John SA. Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol-gel network. J Electroanal Chem. 2008;617:164–70.10.1016/j.jelechem.2008.02.012Suche in Google Scholar
[83] Hezard T, Fajerwerg K, Evrard D, Colliere V, Behra P, Gros P. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: application to Hg(II) trace analysis. J Electroanal Chem. 2012;664:46–52.10.1016/j.jelechem.2011.10.014Suche in Google Scholar
[84] Liu B, Lu L, Wang M, Zi Y. A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI). J Chem Sci. 2008;120:493–8.10.1007/s12039-008-0077-1Suche in Google Scholar
[85] Brainina KhZ, Stozhko NYu, Shalygina ZhV. Surface microreliefs and voltage-current characteristics of gold electrodes and modified thick-film graphite-containing electrodes. J Anal Chem. 2004;59:753–9.10.1023/B:JANC.0000037281.73721.33Suche in Google Scholar
[86] Huan TN, Ganesh T, Kim KS, Kim S, Han S-H, Chung H. A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing. Biosens Bioelectron. 2011;27:183–6.10.1016/j.bios.2011.06.011Suche in Google Scholar PubMed
[87] Pierce DT, Zhao JX, eds. Trace Analysis with Nanomaterials. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA, 2010.Suche in Google Scholar
[88] Shaidarova LG, Budnikov GK. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J Anal Chem. 2008;63:922–42.10.1134/S106193480810002XSuche in Google Scholar
[89] Zheng J, Li X, Gu R, Lu T. Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode. J Phys Chem B. 2002;106:1019–23.10.1021/jp012083rSuche in Google Scholar
[90] Batchelor-McAuley C, Wildgoose GG, Compton RG. The contrasting behaviour of polycrystalline bulk gold and gold nanoparticle modified electrodes towards the underpotential deposition of thallium. New J Chem. 2008;32:941–6.10.1039/b719208hSuche in Google Scholar
[91] Campbell FW, Zhou Y-G, Compton RG. Thallium underpotential deposition on silver nanoparticles: size-dependent adsorption behavior. New J Chem. 2010;34:187–9.10.1039/b9nj00669aSuche in Google Scholar
[92] Campbell FW, Compton RG. Contrasting underpotential depositions of lead and cadmium on silver macroelectrodes and silver nanoparticle electrode arrays. Int J Electrochem Sci. 2010;5:407–13.Suche in Google Scholar
[93] Sudakova LA, Malakhova NA, Stozhko NY. Bismuth nanoparticles in stripping voltammetry of sulfide ions. Electroanalysis. 2014;26:1445–8.10.1002/elan.201400130Suche in Google Scholar
[94] Pal M, Ganesan V. Electrochemical determination of nitrite using silver nanoparticles modified electrode. Analyst. 2010;135:2711–6.10.1039/c0an00289eSuche in Google Scholar PubMed
[95] Chumillas S, Busó-Rogero C, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM. Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. Electrochem Commun. 2011;13:1194–7.10.1016/j.elecom.2011.08.046Suche in Google Scholar
[96] Huang R, Guo L-H. Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode. Sci China: Chem. 2010;53:1778–83.10.1007/s11426-010-3159-0Suche in Google Scholar
[97] Mott D, Luo J, Smith A, Njoki PN, Wang L, Zhong C-J. Nanocrystal and surface alloy properties of bimetallic gold-platinum nanoparticles. Nanoscale Res Lett. 2007;2:12–6.10.1007/s11671-006-9022-8Suche in Google Scholar
[98] Singh B, Laffir F, Dickinson C, McCormac T, Dempsey E. Carbon supported cobalt and nickel based nanomaterials for direct uric acid determination. Electroanalysis. 2011;23:79–89.10.1002/elan.201000444Suche in Google Scholar
[99] Arrigan DWM. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst. 2004;129:1157–65.10.1039/b415395mSuche in Google Scholar PubMed
[100] De Leo M, Kuhn A, Ugo P. 3D-ensembles of gold nanowires: preparation, characterization and electroanalytical peculiarities. Electroanalysis. 2007;19:227–36.10.1002/elan.200603724Suche in Google Scholar
[101] Zhou Y-G, Campbell FW, Belding SR, Compton RG. Nanoparticle modified electrodes: Surface coverage effects in voltammetry showing the transition from convergent to linear diffusion. The reduction of aqueous chromium (III) at silver nanoparticle modified electrodes. Chem Phys Lett., 2010;497:200–4.10.1016/j.cplett.2010.08.012Suche in Google Scholar
[102] Giannetto M, Mori G, Terzi F, Zanardi C, Seeber R. Composite PEDOT/Au nanoparticles modified electrodes for determination of mercury at trace levels by anodic stripping voltammetry. Electroanalysis. 2011;23:456–62.10.1002/elan.201000469Suche in Google Scholar
[103] Malakhova NA, Mysik AA, Saraeva SYu et al. A voltammetric sensor on the basis of bismuth nanoparticles prepared by the method of gas condensation. J Anal Chem. 2010;65:640–7.10.1134/S1061934810060158Suche in Google Scholar
[104] Nikolaev K, Ermakov S, Ermolenko Y, Averyaskina E, Offenhäusser A, Mourzina Y. A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein’s salt. A bioelectrochemical sensor for glucose determination. Bioelectrochemistry. 2015;105:34–43.10.1016/j.bioelechem.2015.05.004Suche in Google Scholar PubMed
[105] Devnani H, Satsangee SP. Green gold nanoparticle modified anthocyanin-based carbon paste electrode for voltammetric determination of heavy metals. Int J Environ Sci Technol. 2015;12:1269–82.10.1007/s13762-014-0497-zSuche in Google Scholar
[106] Karuppiah C, Palanisamy S, Chen S-M, Emmanuel R, Muthupandi K, Prakash P. Green synthesis of gold nanoparticles and its application for the trace level determination of painter’s colic. RSC Adv. 2015;5:16284–91.10.1039/C4RA14988BSuche in Google Scholar
[107] Karthik R, Govindasamy M, Chen S-M, et al. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci. 2016;475:46–56.10.1016/j.jcis.2016.04.044Suche in Google Scholar PubMed
[108] Vikesland PJ, Wigginton KR. Nanomaterial enabled biosensors for pathogen monitoring – A review. Environ Sci Technol. 2010;44:3656–69.10.1021/es903704zSuche in Google Scholar PubMed
[109] Aragay G, Merkoci A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta. 2012;84:49–61.10.1016/j.electacta.2012.04.044Suche in Google Scholar
[110] Atta NF, Galal A, Azab SM. Electrochemical determination of paracetamol using gold nanoparticles – application in tablets and human fluids. Int J Electrochem Sci. 2011;6:5082–96.Suche in Google Scholar
[111] Fan Y, Liu J-H, Lu H-T, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloids Surf B. 2011;85:289–92.10.1016/j.colsurfb.2011.02.041Suche in Google Scholar PubMed
[112] Sanghavi BJ, Srivastava AK. Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal Chim Acta. 2011;706:246–54.10.1016/j.aca.2011.08.040Suche in Google Scholar PubMed
[113] Atta NF, Galal A, Azab SM. Electrochemical morphine sensing using gold nanoparticles modified carbon paste electrode. Int J Electrochem Sci. 2011;6:5066–81.Suche in Google Scholar
[114] Wei X, Wang F, Yin Y, Liu Q, Zou L, Ye B. Selective detection of neurotransmitter serotonin by a gold nanoparticle-modified glassy carbon electrode. Analyst. 2010;135:2286–90.10.1039/c0an00256aSuche in Google Scholar PubMed
[115] Mashhadizadeh MH, Khani H, Foroumadi A, Sagharichi P. Comparative studies of mercapto thiadiazoles self-assembled on gold nanoparticle as ionophores for Cu(II) carbon paste sensors. Anal Chim Acta. 2010;665:208–14.10.1016/j.aca.2010.03.023Suche in Google Scholar PubMed
[116] Wang Z, Liao F, Guo T, Yang S, Zeng C. Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. J Electroanal Chem. 2012;664:135–8.10.1016/j.jelechem.2011.11.006Suche in Google Scholar
[117] Miao P, Shen M, Ning L, Chen G, Yin Y. Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Anal Bioanal Chem. 2011;399:2407–11.10.1007/s00216-010-4642-3Suche in Google Scholar PubMed
[118] Xing S, Xu H, Chen J, Shi G, Jin L. Nafion stabilized silver nanoparticles modified electrode and its application to Cr(VI) detection. J Electroanal Chem. 2011;652:60–5.10.1016/j.jelechem.2010.03.035Suche in Google Scholar
[119] Thiagarajan S, Tsai TH, Chen S-M. Electrochemical fabrication of nano manganese oxide modified electrode for the Detection of H2O2. Int J Electrochem Sci. 2011;6:2235–45.Suche in Google Scholar
[120] Martins PR, Aparecida Rocha M, Angnes L, Eisi Toma H, Araki K. Highly sensitive amperometric glucose sensors based on nanostructured α-Ni(OH)2 electrodes. Electroanalysis. 2011;23:2541–48.10.1002/elan.201100271Suche in Google Scholar
[121] Eremenko AV, Dontsova EA, Nazarov AP et al. Manganese dioxide nanostructures as a novel electrochemical mediator for thiol sensors. Electroanalysis. 2012;24:573–80.10.1002/elan.201100535Suche in Google Scholar
[122] Kalanur SS, Seetharamappa J, Prashanth SN. Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode. Colloids Surf, B. 2010;78:217–21.10.1016/j.colsurfb.2010.03.003Suche in Google Scholar PubMed
[123] Parham H, Rahbar N. Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater. 2010;177:1077–84.10.1016/j.jhazmat.2010.01.031Suche in Google Scholar PubMed
[124] Mafakheri E, Salimi A, Hallaj R, Ramazani A, Kashic MA. Synthesis of iridium oxide nanotubes by electrodeposition into polycarbonate template: fabrication of chromium(III) and arsenic(III) electrochemical sensor. Electroanalysis. 2011;23:2429–37.10.1002/elan.201100332Suche in Google Scholar
[125] Khun K, Ibupoto ZH, Ali SMU, Chey CO, Nur O, Willander M. Iron ion sensor based on functionalized ZnO nanorods. Electroanalysis. 2012;24:521–8.10.1002/elan.201100494Suche in Google Scholar
[126] Sanchez A, Morante-Zarcero S, Perez-Quintanilla D, Sierra I, Del Hierro I. Development of screen-printed carbon electrodes modified with functionalized mesoporous silica nanoparticles: application to voltammetric stripping determination of Pb(II) in non-pretreated natural waters. Electrochim Acta. 2010;55:6983–90.10.1016/j.electacta.2010.06.090Suche in Google Scholar
[127] Wu S, Lan X, Cui L, et al. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal Chim Acta. 2011;699:170–6.10.1016/j.aca.2011.05.032Suche in Google Scholar PubMed
[128] Liu F, Choi KS, Park TJ, Lee SY, Seo TS. Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J. 2011;5:123–8.10.1007/s13206-011-5204-2Suche in Google Scholar
[129] Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L. Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci. 2005;21:1383–93.10.2116/analsci.21.1383Suche in Google Scholar PubMed
[130] Chen X, Wu G-H, Jiang Y-Q, Wang Y-R, Chen X-M. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst. 2011;136:4631–40.10.1039/c1an15661fSuche in Google Scholar PubMed
[131] Kong F-Y, Li X-R, Zhao W-W, Xu J-J, Chen H-Y. Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun. 2012;14:59–62.10.1016/j.elecom.2011.11.004Suche in Google Scholar
[132] Willner I, Willner B, Tel-Vered R. Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis. 2011;23:13–28.10.1002/elan.201000506Suche in Google Scholar
[133] Li L, Zhang Z. Biosynthesis of gold nanoparticles using green alga Pithophora oedogonia with their electrochemical performance for determining carbendazim in soil. Int J Electrochem Sci. 2016;11:4550–59.10.20964/2016.06.13Suche in Google Scholar
[134] Gnana Kumar G, Justice Babu K, Nahm KS, Hwang YJ. A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSCAdv. 2014;4:7944–51.10.1039/c3ra45596cSuche in Google Scholar
[135] Abollino O, Giacomino A, Ginepro M, Malandrino M, Zelano I. Analytical applications of a nanoparticle-based sensor for the determination of mercury. Electroanalysis. 2012;24:727–34.10.1002/elan.201100531Suche in Google Scholar
[136] Gholivand MB, Geravandi B, Parvin MH. Anodic stripping voltammetric determination of iron(II) at a carbon paste electrode modified with dithiodianiline (DTDA) and gold nanoparticles (GNP). Electroanalysis. 2011;23:1345–51.10.1002/elan.201000715Suche in Google Scholar
[137] Mashhadizadeh MH, Talemi RP. Used gold nano-particles as an on/off switch for response of a potentiometric sensor to Al(III) or Cu(II) metal ions. Anal Chim Acta. 2011;692:109–15.10.1016/j.aca.2011.02.028Suche in Google Scholar PubMed
[138] Rajkumar M, Chiou S-C, Chen S-M, Thiagarajan S. A novel poly (taurine)/nano gold modified electrode for the determination of arsenic in various water samples. Int J Electrochem Sci. 2011;6:3789–800.Suche in Google Scholar
[139] Tsai M-C, Chen P-Y. Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta. 2008;76:533–9.10.1016/j.talanta.2008.03.043Suche in Google Scholar PubMed
[140] Tsai T-H, Lin K-C, Chen S-M. Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int J Electrochem Sci. 2011;6:2672–87.Suche in Google Scholar
[141] Gholivand MB, Parvin MH. Voltammetric study of acetazolamide and its determination in human serum and urine using carbon paste electrode modified by gold nanoparticle. J Electroanal Chem. 2011;660:163–8.10.1016/j.jelechem.2011.06.026Suche in Google Scholar
[142] Tagar ZA, Sirajuddina ZA, Memon N, et al. Selective, simple and economical lead sensor based on ibuprofen derived silver nanoparticles. Sens Actuators, B. 2011;157:430–7.10.1016/j.snb.2011.04.082Suche in Google Scholar
[143] Gong J, Zhou T, Song D, Zhang L, Hu X. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. Anal Chem. 2010;82:567–73.10.1021/ac901846aSuche in Google Scholar PubMed
[144] Fenga PG, Stradiotto NR, Pividori MI. Silver nanocomposite electrode modified with hexacyanoferrate. Preparation, characterization and electrochemical behaviour towards substituted anilines. Electroanalysis. 2011;23:1100–6.10.1002/elan.201000651Suche in Google Scholar
[145] Adekunle AS, Mamba BB, Agboola BO, Ozoemena KI. Nitrite electrochemical sensor based on Prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode. Int J Electrochem Sci. 2011;6:4388–403.Suche in Google Scholar
[146] Taufik S, Yusof NA, Tee TW, Ramli I. Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. Int J Electrochem Sci. 2011;6:1880–91.Suche in Google Scholar
[147] Zidan M, Tee TW, Abdullah AH, Zainal Z, Kheng GJ. Electrochemical oxidation of paracetamol mediated by nanoparticles bismuth oxide modified glassy carbon electrode. Int J Electrochem Sci. 2011;6:279–88.Suche in Google Scholar
[148] Fekri MH, Khanmohammadi H, Darvishpour M. An electrochemical Cr(III)-selective sensor-based on a newly synthesized ligand and optimization of electrode with a nano particle. Int J Electrochem Sci. 2011;6:1679–85.Suche in Google Scholar
[149] Zhong H, Yuan R, Chai Y, Li W, Zhang Y, Wang C. Amperometric biosensor for hydrogen peroxide based on horseradish peroxidase onto gold nanowires and TiO2 nanoparticles. Bioprocess Biosyst Eng. 2011;34:923–30.10.1007/s00449-011-0543-xSuche in Google Scholar PubMed
[150] Wang G, Sun J, Zhang W, Jiao S, Fang B. Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta. 2009;164:357–62.10.1007/s00604-008-0066-6Suche in Google Scholar
[151] Valentini F, Romanazzo D, Carbone M, Palleschi G. Modified screen-printed electrodes based on oxidized graphene nanoribbons for the selective electrochemical detection of several molecules. Electroanalysis. 2012;24:872–81.10.1002/elan.201100415Suche in Google Scholar
[152] Sartori ER, Fatibello-Filho O. Simultaneous voltammetric determination of ascorbic acid and sulfite in beverages employing a glassy carbon electrode modified with carbon nanotubes within a poly(allylamine hydrochloride) film. Electroanalysis. 2012;24:627–34.10.1002/elan.201100691Suche in Google Scholar
[153] Narang J, Chauhan N, Pundir CS. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode. Analyst. 2011;136:4460–6.10.1039/c1an15543aSuche in Google Scholar PubMed
[154] Li H, Xie C, Li S, Xu K. Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf B. 2012;89:175–81.10.1016/j.colsurfb.2011.09.010Suche in Google Scholar PubMed
[155] Guo S, Wen D, Zhai Y, Dong S, Wang E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano. 2010;4:3959–68.10.1021/nn100852hSuche in Google Scholar PubMed
[156] Gholivand MB, Azadbakht A, Pashabadi A. An electrochemical sensor based on carbon nanotube bimetallic Au-Pt inorganic-organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin. Electroanalysis. 2011;23:2771–9.10.1002/elan.201100381Suche in Google Scholar
[157] Shin S-H, Hong H-G. Anodic stripping voltammetric detection of arsenic(III) at platinum-iron(III) nanoparticle modified carbon nanotube on glassy carbon electrode. Bull Korean Chem Soc. 2010;31:3077–83.10.5012/bkcs.2010.31.11.3077Suche in Google Scholar
[158] Yari A, Papi F, Farhadi S. Voltammetric determination of trace antiepileptic gabapentin with a silver-nanoparticle modified multiwalled carbon nanotube paste electrode. Electroanalysis. 2011;23:2949–54.10.1002/elan.201100454Suche in Google Scholar
[159] Panchompoo J, Aldous L, Downing C, Crossley A, Compton RG. Facile synthesis of Pd nanoparticle modified carbon black for electroanalysis: application to the detection of hydrazine. Electroanalysis. 2011;23:1568–78.10.1002/elan.201100163Suche in Google Scholar
[160] Chen X-M, Lin Z-J, Chen D-J, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron. 2010;25:1803–8.10.1016/j.bios.2009.12.035Suche in Google Scholar PubMed
[161] Pham H, Bui MPN, Li CA, Han KN, Seong GH. Electrochemical patterning of palladium nanoparticles on a single‐walled carbon nanotube platform and its application to glucose detection. Electroanalysis. 2011;23:2087–93.10.1002/elan.201100046Suche in Google Scholar
[162] Shamsipur M, Asgari M, Mousavi MF, Davarkhah R. A novel hydrogen peroxide sensor based on the direct electron transfer of catalase immobilized on nano-sized NiO/MWCNTs composite film. Electroanalysis. 2012;24:357–67.10.1002/elan.201100453Suche in Google Scholar
[163] Sattarahmady N, Heli H, Faramarzi F. Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin. Talanta. 2010;82:1126–35.10.1016/j.talanta.2010.06.022Suche in Google Scholar PubMed
[164] Periasamy AP, Yang S, Chen S-M. Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta. 2011;87:15–23.10.1016/j.talanta.2011.09.021Suche in Google Scholar PubMed
[165] Wei Y, Gao C, Meng F-L et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C. 2012;116:1034–41.10.1021/jp209805cSuche in Google Scholar
[166] Hu F, Chen S, Wang C, et al. ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J Mol Catal B: Enzym. 2011;72:298–304.10.1016/j.molcatb.2011.07.005Suche in Google Scholar
[167] Ganjali MR, Poursaberi T, Khoobi M, et al. Copper nano-composite potentiometric sensor. Int J Electrochem Sci. 2011;6:717–26.Suche in Google Scholar
[168] Ganjali MR, Alizadeh T, Azimi F, Larjani B, Faridbod F, Norouzi P. Bio-mimetic ion imprinted polymer based potentiometric mercury sensor composed of nano-materials. Int J Electrochem Sci. 2011;6:5200–8.Suche in Google Scholar
[169] Sonkar PK, Ganesan V. Synthesis and characterization of silver nanoparticle-anchored amine-functionalized mesoporous silica for electrocatalytic determination of nitrite. J Solid State Electrochem. 2015;19:2107–15.10.1007/s10008-014-2725-3Suche in Google Scholar
[170] Tian Y, Liu Y, Wang W, Zhang X, Peng W. Sulfur-doped graphene-supported Ag nanoparticles for nonenzymatic hydrogen peroxide detection. J Nanopart Res. 2015;17:193–201.10.1007/s11051-015-2976-7Suche in Google Scholar
[171] Liu G-T, Chen H-F, Lin G-M, et al. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. Biosens Bioelectron. 2014;56:26–32.10.1016/j.bios.2014.01.005Suche in Google Scholar PubMed
[172] Song H, Ni Y, Kokot S. A novel electrochemical sensor based on the copper – doped copper oxide nano – particles for the analysis of hydrogen peroxide. Colloids Surf A. 2015;465:153–8.10.1016/j.colsurfa.2014.10.047Suche in Google Scholar
[173] Chirizzi D, Guascito MR, Filippo E, Malitesta C, Tepore A. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol). Talanta. 2016;147:124–31.10.1016/j.talanta.2015.09.038Suche in Google Scholar PubMed
[174] Budnikov GK, Ziyatdinova GK, Gil’Metdinova DM. Determination of some liposoluble antioxidants by coulometry and voltammetry. J Anal Chem. 2004;59:654–8.10.1023/B:JANC.0000035278.20459.9eSuche in Google Scholar
[175] Ziyatdinova GK, Budnikov HC, Pogorel’tzev VI, Ganeev TS. The application of coulometry or total antioxidant capacity determination of human blood. Talanta. 2006;68:800–5.10.1016/j.talanta.2005.06.010Suche in Google Scholar PubMed
[176] Ziyatdinova GK, Budnikov GK, Samigullin AI, Gabdullina GT, Sofronov AV, Al’Metkina LA, et al. Electrochemical determination of synthetic antioxidants of bisdithiophosphonic acids. J Anal Chem. 2010;65:1273–9.10.1134/S1061934810120129Suche in Google Scholar
[177] Shpigun LK, Arharova MA, Brainina KZ, Ivanova AV. Flow injection potentiometric determination of total antioxidant activity of plant extracts. Anal Chim Acta. 2006;573–574, 419–26.10.1016/j.aca.2006.03.094Suche in Google Scholar PubMed
[178] Brainina KhZ, Alyoshina LV, Gerasimova EL, Kazakov YaE, Ivanova AV, Beykinc YaB, et al. New electrochemical method of determining blood and blood fractions antioxidant activity. Electroanalysis. 2009;21:618–24.10.1002/elan.200804458Suche in Google Scholar
[179] Шарафутдинова ЕН, Иванова АВ, Матерн АИ, Брайнина ХЗ. Качество пищевых продуктовиантиоксидантная активность. Аналитика и контроль. 2011;15:281–6 (Sharafutdinova EN, Ivanova AV, Matern AI, Brainina KhZ. Food quality and antioxidant activity. Anal Control 2011;15:281–6, original source in Russian).Suche in Google Scholar
[180] Плотников ЕВ, Короткова ЕИ, Дорожко ЕВ, Букель М, Линерт В. Исследование суммарной антиоксидантной активности сыворотки крови человека в норме и патологии алкоголизма методом вольтамперометрии. Заводск лаб. Диагностика матер. 2009;75:14–7. (Plotnikov EV, Korotkova EI, Dorozhko EV, Bukel’ M, Linert V. The study of the total antioxidant activity of human blood serum in norm and the pathology of alcoholism by the voltammetry method. Factory lab. Diagn Mater 2009;75:14–7, original source in Russian).Suche in Google Scholar
[181] Сажина НН, Мисин ВМ, Короткова ЕИ. Исследование антиоксидантных свойств водного экстракта мяты электрохимическими методами. Химия растительного сырья. 2010;4:77–82. (Sazhina NN, Misin VM, Korotkova EI. Research of antioxidant properties of water extract of mint by electrochemical methods. Chem Plant Raw Mater 2010;4:77–82, original source in Russian).Suche in Google Scholar
[182] Hu W, Sun D, Ma W. Silver doped poly(L-valine) modified glassy carbon electrode for the simultaneous determination of uric acid, ascorbic acid and dopamine. Electroanalysis. 2010;22:584–9.10.1002/elan.200900376Suche in Google Scholar
[183] Lin Y, Hu Y, Long Y, Di J. Determination of ascorbic acid using an electrode modified with cysteine self-assembled gold-platinum nanoparticles. Microchim Acta. 2011;175:259–64.10.1007/s00604-011-0689-xSuche in Google Scholar
[184] Tavakkoli N, Nasrollahi S, Vatankhah G. Electrocatalytic determination of ascorbic acid using a palladium coated nanoporous gold film electrode. Electroanalysis. 2012;24:368–75.10.1002/elan.201100414Suche in Google Scholar
[185] Mazloum-Ardakani M, Sheikh-Mohseni MA, Beitollahi H, Benvidi A, Naeimi H. Electrochemical determination of vitamin C in the presence of uric acid by a novel TiO2 nanoparticles modified carbon paste electrode. Chin Chem Lett. 2010;21:1471–4.10.1016/j.cclet.2010.07.026Suche in Google Scholar
[186] Atta NF, El-Kady MF, Galal A. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Anal Biochem. 2010;400:78–88.10.1016/j.ab.2010.01.001Suche in Google Scholar PubMed
[187] Dursun Z, Gelmez B. Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE. Electroanalysis. 2010;22:1106–14.10.1002/elan.200900525Suche in Google Scholar
[188] Li J, Lin X-Q. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta. 2007;596:222–30.10.1016/j.aca.2007.05.057Suche in Google Scholar PubMed
[189] Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V. PEDOT/Palladium composite material: synthesis, characterization and application to simultaneous determination of dopamine and uric acid. J Appl Electrochem. 2008;38:1583–8.10.1007/s10800-008-9609-0Suche in Google Scholar
[190] Shaidarova LG, Chelnokova IA, Romanova EI, Gedmina AV, Budnikov GK. Joint voltammetric determination of dopamine and uric acid. Russ J Appl Chem. 2011;84:218–24.10.1134/S1070427211020091Suche in Google Scholar
[191] Wang S, Xu Q, Liu G. Differential pulse voltammetric determination of uric acid on carbon-coated iron nanoparticle modified glassy carbon electrodes. Electroanalysis. 2008;20:1116–20.10.1002/elan.200804160Suche in Google Scholar
[192] Ulubay S, Dursun Z. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta. 2010;80:1461–66.10.1016/j.talanta.2009.09.054Suche in Google Scholar PubMed
[193] MA Tehrani R, Ab Ghani S. Voltammetric analysis of uric acid by zinc-nickel nanoalloy coated composite graphite. Sens Actuators B. 2010;145:20–4.10.1016/j.snb.2009.11.001Suche in Google Scholar
[194] Fang B, Feng Y, Wang G, Zhang C, Gu A, Liu M. A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes. Microchim Acta. 2011;173:27–32.10.1007/s00604-010-0509-8Suche in Google Scholar
[195] Habibi B, Pezhhan H, Pournaghi-Azar MH. Voltammetric and amperometric determination of uric acid at a carbon-ceramic electrode modified with multi walled carbon nanotubes. Microchim Acta. 2010;169:313–20.10.1007/s00604-010-0338-9Suche in Google Scholar
[196] Ardakani MM, Mohseni MAS, Beitollahi H, Benvidi A, Naeimi H. Simultaneous determination of dopamine, uric acid, and folic acid by a modified TiO2 nanoparticles carbon paste electrode Turk J Chem. 2011;35:573–85.10.3906/kim-1007-784Suche in Google Scholar
[197] Curulli A, DiCarlo G, Ingo GM, Riccucci C, Zane D, Bianchini C. Chitosan stabilized gold nanoparticle-modified Au electrodes for the determination of polyphenol index in wines: a preliminary study. Electroanalysis. 2012;24:897–904.10.1002/elan.201100583Suche in Google Scholar
[198] Sun J-Y, Huang K-J, Wei S-Y, Wu Z-W, Ren F-P. A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf B. 2011;84:421–6.10.1016/j.colsurfb.2011.01.036Suche in Google Scholar PubMed
[199] Souza LP, Calegari F, Zarbin AJG, Marcolino-Junior LH, Bergamini MF. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J Agric Food Chem. 2011;59:7620–5.10.1021/jf2005589Suche in Google Scholar PubMed
[200] Wang G, Liu M, Wang G et al. Preparation of CuO-Nanoparticle-modified electrode and its application in the determination of rutin. Anal Lett. 2009;42:1084–93.10.1080/00032710902890371Suche in Google Scholar
[201] Wei Y, Wang G, Li M, Wang C, Fang B. Determination of rutin using a CeO2 nanoparticle-modified electrode. Microchim Acta. 2007;158:269–74.10.1007/s00604-006-0716-5Suche in Google Scholar
[202] Yin H, Zhou Y, Cui L, et al. Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly (amido amine) dendrimer. Microchim Acta. 2011;173:337–45.10.1007/s00604-011-0568-5Suche in Google Scholar
[203] Wang M, Zhang D, Tong Z, Xu X, Yang X. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J Appl Electrochem. 2011;41:189–96.10.1007/s10800-010-0223-6Suche in Google Scholar
[204] Brondani D, Vieira IC, Piovezan C et al. Sensor for fisetin based on gold nanoparticles in ionic liquid and binuclear nickel complex immobilized in silica. Analyst. 2010;135:1015–22.10.1039/b925533hSuche in Google Scholar PubMed
[205] Huo Z, Zhou Y, Liu Q, He X, Liang Y, Xu M. Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchim Acta. 2011;173(1–2), 119–25.10.1007/s00604-010-0530-ySuche in Google Scholar
[206] Chee SY, Flegel M, Pumera M. Regulatory peptides desmopressin and glutathione voltammetric determination on nickel oxide modified electrodes. Electrochem Commun. 2011;13:963–5.10.1016/j.elecom.2011.06.012Suche in Google Scholar
[207] Safavi A, Maleki N, Farjami E, Mahyari FA. Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode. Anal Chem. 2009;81:7538–43.10.1021/ac900501jSuche in Google Scholar PubMed
[208] Sattarahmady N, Heli H. An electrocatalytic transducer for l-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core-shell structure. Anal Biochem. 2011;409:74–80.10.1016/j.ab.2010.09.032Suche in Google Scholar PubMed
[209] Mazloum-Ardakani M, Beitollahi H, Taleat Z, Salavati-Niasari M. Fabrication and characterization of molybdenum(VI) complex-TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine. J Serb Chem Soc. 2011;76:575–89.10.2298/JSC100504042MSuche in Google Scholar
[210] Majidi MR, Asadpour-Zeynali K, Hafezi B. Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Microchim Acta. 2010;169:283–8.10.1007/s00604-010-0350-0Suche in Google Scholar
[211] Zare HR, Chatraei F. Preparation and electrochemical characteristics of electrodeposited acetaminophen on ruthenium oxide nanoparticles and its role as a sensor for simultaneous determination of ascorbic acid, dopamine and N-acetyl-l-cysteine. Sens Actuators B. 2011;160:1450–7.10.1016/j.snb.2011.10.012Suche in Google Scholar
[212] Kannan P, Chen H, Lee VT-W, Kim D-H. Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol-gel film modified electrode. Talanta. 2011;86:400–7.10.1016/j.talanta.2011.09.034Suche in Google Scholar PubMed
[213] Usman Ali SM, Ibupoto ZH, Chey CO, Nur O, Willander M. Functionalized ZnO nanotube arrays for the selective determination of uric acid with immobilized uricase. Chem Sens. 2011;19:1–8.Suche in Google Scholar
[214] Yola ML, Gupta VK, Eren T, Şen AE, Atar N. A novel electroanalytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 2014;120:204–11.10.1016/j.electacta.2013.12.086Suche in Google Scholar
[215] Mpanza T, Sabela MI, Mathenjwa SS, Kanchi S, Bisetty K. Electrochemical determination of capsaicin and silymarin using a glassy carbon electrode modified by gold nanoparticle decorated multiwalled carbon nanotubes. Anal Lett. 2014;47:2813–28.10.1080/00032719.2014.924010Suche in Google Scholar
[216] Zhou J, Zhang K, Liu J, Song G, Ye B. A supersensitive sensor for rutin detection based on multi-walled carbon nanotubes and gold nanoparticles modified carbon paste electrodes. Anal Methods. 2012;4:1350–6.10.1039/c2ay05930dSuche in Google Scholar
[217] Huang L, Hou K, Jia X, Pan H, Du M. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Mater Sci Eng C. 2014;38:39–45.10.1016/j.msec.2014.01.037Suche in Google Scholar PubMed
[218] Silva TR, Brondani D, Zapp E, Vieira IC. Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) for determination of vanillin. Electroanalysis. 2015;27:465–72.10.1002/elan.201400517Suche in Google Scholar
[219] Shang L, Zhao F, Zeng B. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chem. 2014;151:53–7.10.1016/j.foodchem.2013.11.044Suche in Google Scholar PubMed
[220] Liu B, Luo L, Ding Y, et al. Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochim Acta. 2014;142:336–42.10.1016/j.electacta.2014.07.126Suche in Google Scholar
[221] Lin X, Ni Y, Kokot S. Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta. 2013;765:54–62.10.1016/j.aca.2012.12.036Suche in Google Scholar PubMed
[222] Ziyatdinova G, Ziganshina E, Cong PN, Budnikov HK. Voltammetric determination of thymol in oregano using CeO2-modified electrode in Brij® 35 micellar medium. Food Anal Methods. 2017;10:129–36.10.1007/s12161-016-0562-ySuche in Google Scholar
[223] Palanisamy S, Karuppiah C, Chen S-M et al. Selective and simultaneous determination of dihydroxybenzene isomers based on green synthesized gold nanoparticles decorated reduced graphene oxide. Electroanalysis. 2015;27:1144–51.10.1002/elan.201400657Suche in Google Scholar
[224] Ananthi A, Kumar SS, Phani KL. Facile one-step direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid. Electrochim Acta. 2015;151:584–90.10.1016/j.electacta.2014.11.069Suche in Google Scholar
[225] Vilian ATE, Chen SM. Preparation of carbon nanotubes decorated with manganese dioxide nanoparticles for electrochemical determination of ferulic acid. Microchim Acta. 2015;182:1103–11.10.1007/s00604-014-1431-2Suche in Google Scholar
[226] Zhang H, Huang F, Xu S, Xia Y, Huang W, Li Z. Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem Commun. 2013;30:46–50.10.1016/j.elecom.2013.02.007Suche in Google Scholar
[227] Ponnusamy VK, Mani V, Chen SM, Huang WT, Jen JF. Rapid microwave assisted synthesis of graphene nanosheets/ polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta. 2014;120:148–57.10.1016/j.talanta.2013.12.003Suche in Google Scholar PubMed
[228] Song J, Xu L, Xing R, Li Q, Zhou C, Liu D, Song H. Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Sci Rep. 2014;4:1–5.10.1038/srep07515Suche in Google Scholar PubMed PubMed Central
[229] Vinoth V, Wu JJ, Asiri AM, Anandan S. Simultaneous detection of dopamine and ascorbic acid using silicate network interlinked gold nanoparticles and multi-walled carbon nanotubes. Sens Actuators, B. 2015;210:731–41.10.1016/j.snb.2015.01.040Suche in Google Scholar
[230] Shaidarova LG, Chelnokova IA, Degtev MA, et al. Amperometric detection under batch-injection analysis conditions of caffeine on an electrode modified by mixed-valence iridium and ruthenium oxides. Pharm Chem J. 2016;49:711–4.10.1007/s11094-016-1358-5Suche in Google Scholar
[231] Çakır S, Biçer E, Arslan EY. A newly developed electrocatalytic oxidation and voltammetric determination of curcumin at the surface of PdNp-graphite electrode by an aqueous solution process with Al3+. Croat Chem Acta. 2015;88:105–12.10.5562/cca2527Suche in Google Scholar
[232] Cheraghi S, Taher MA, Karimi-Maleh H. Fabrication of fast and sensitive nanostructure voltammetric sensor for determination of curcumin in the presence of vitamin B9 in food samples. Electroanalysis. 2016;28:2590–7.10.1002/elan.201600252Suche in Google Scholar
[233] Lin X, Ni Y, Kokot S. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples. Electrochim Acta. 2014;133:484–91.10.1016/j.electacta.2014.04.065Suche in Google Scholar
[234] Ibrahim H, Temerk Y. Novel sensor for sensitive electrochemical determination of luteolin based on In2O3 nanoparticles modified glassy carbon paste electrode. Sens Actuat B. 2015;206:744–52.10.1016/j.snb.2014.09.011Suche in Google Scholar
[235] Guivar JAR, Sanches EA, Magon CJ, Fernandes EGR. Preparation and characterization of cetyltrimethylammonium bromide (CTAB)-stabilized Fe3O4 nanoparticles for electrochemistry detection of citric acid. J Electroanal Chem. 2015;755:158–66.10.1016/j.jelechem.2015.07.036Suche in Google Scholar
[236] Cao X, Ye Y, Liu S. Gold nanoparticle-based signal amplification for biosensing. Anal Biochem. 2011;417:1–16.10.1016/j.ab.2011.05.027Suche in Google Scholar PubMed
[237] Ravalli A, Marrazza G. Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J Nanosci Nanotechnol. 2015;15:3307–19.10.1166/jnn.2015.10038Suche in Google Scholar PubMed
[238] Kumar S, Ahlawat W, Kumar R, Dilbaghi N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron. 2015;70:498–503.10.1016/j.bios.2015.03.062Suche in Google Scholar PubMed
[239] Huang K-J, Sun J-Y, Xu C-X, Niu D-J, Xie W-Z. A disposable immunosensor based on gold colloid modified chitosan nanoparticles-entrapped carbon paste electrode. Microchim Acta. 2010;168:51–8.10.1007/s00604-009-0254-zSuche in Google Scholar
[240] Zhang S, Zheng F, Wu Z, Shen G, Yu R. Highly sensitive electrochemical detection of immunospecies based on combination of Fc label and PPD film/gold nanoparticle amplification. Biosens Bioelectron. 2008;24:129–35.10.1016/j.bios.2008.03.017Suche in Google Scholar PubMed
[241] Mao X, Jiang J, Luo Y, Shen G, Yu R. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta. 2007;73:420–24.10.1016/j.talanta.2007.04.004Suche in Google Scholar PubMed
[242] Mao X, Jiang J, Chen J, Huang Y, Shen G, Yu R. Cyclic accumulation of nanoparticles: A new strategy for electrochemical immunoassay based on the reversible reaction between dethiobiotin and avidin. Anal Chim Acta. 2006;557:159–63.10.1016/j.aca.2005.09.078Suche in Google Scholar
[243] Li J, Gao H. A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti-IgG. Electroanalysis. 2008;20:881–7.10.1002/elan.200704094Suche in Google Scholar
[244] de la Escosura-Muñiz A, Ambrosi A, Alegret S, Merkoçi A. Electrochemical immunosensing using micro and nanoparticles. Methods Mol Bio. (Clifton, N.J.) 2009;504:145–55.Suche in Google Scholar
[245] Mao X, Jiang J, Huang Y, Shen G, Yu R. Gold nanoparticle accumulation using magnetic particles: a new strategy for electrochemical immunoassay based on the reversible reaction between dethiobiotin and avidin. Sens Actuators, B. 2007;123:198–20310.1016/j.snb.2006.08.008Suche in Google Scholar
[246] Wang L, Jia X, Zhou Y, Xie Q, Yao S. Sandwich-type amperometric immunosensor for human immunoglobulin G using antibody-adsorbed Au/SiO2 nanoparticles. Microchim Acta. 2010;168:245–51.10.1007/s00604-009-0281-9Suche in Google Scholar
[247] Zhang L, Liu Y, Chen T. Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle/l-cysteine-modified gold electrode. Microchim Acta. 2009;164:161–6.10.1007/s00604-008-0052-zSuche in Google Scholar
[248] Ambrosi A, Castaneda MT, Killard AJ, Smyth MR, Alegret S, Merkoci A. Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem. 2007;79:5232–40.10.1021/ac070357mSuche in Google Scholar PubMed
[249] Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem. 2000;72:5521–8.10.1021/ac000781mSuche in Google Scholar PubMed
[250] Chumbimuni-Torres KY, Dai Z, Rubinova N et al. Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels. J Am Chem Soc. 2006;128:13676–7.10.1021/ja065899kSuche in Google Scholar PubMed PubMed Central
[251] Pal S, Alocilja EC. Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection. Biosens Bioelectron. 2010;26:1624–30.10.1016/j.bios.2010.08.035Suche in Google Scholar PubMed
[252] Brainina KZ, Kozitsina AN, Glazyrina YA. Hybrid electrochemical/magnetic assay for Salmonella typhimurium detection. IEEE Sens J. 2010;10:1699–704.10.1109/JSEN.2010.2046410Suche in Google Scholar
[253] Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, Chailapakul O. Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta. 2008;77:727–32.10.1016/j.talanta.2008.07.014Suche in Google Scholar
[254] Cheng Y-X, Liu Y-J, Huang J-J, et al. Platinum nanoparticles modified electrode for rapid electrochemical detection of Escherichia coli. Chin J Chem. 2008;26:302–6.10.1002/cjoc.200890059Suche in Google Scholar
[255] De Souza Castilho M, Laube T, Yamanaka H, Alegret S, Pividori MI. Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles. Anal Chem. 2011;83:5570–7.10.1021/ac200573sSuche in Google Scholar PubMed
[256] Setterington EB, Alocilja EC. Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors. 2012;2:15–31.10.3390/bios2010015Suche in Google Scholar PubMed PubMed Central
[257] Tang D, Tang J, Su B, Chen G. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. J Agric Food Chem. 2010;58:10824–30.10.1021/jf102326mSuche in Google Scholar PubMed
[258] Tang D, Yuan R, Chai Y, Liu Y, Dai J, Zhong X. Novel potentiometric immunosensor for determination of diphtheria antigen based on compound nanoparticles and bilayer two-dimensional sol-gel as matrices. Anal Bioanal Chem. 2005;381:674–80.10.1007/s00216-004-2916-3Suche in Google Scholar PubMed
[259] Shen G, Zhang Y. Highly sensitive electrochemical stripping detection of hepatitis B surface antigen based on copper-enhanced gold nanoparticle tags and magnetic nanoparticles. Anal Chim Acta. 2010;674:27–31.10.1016/j.aca.2010.06.007Suche in Google Scholar PubMed
[260] Tang D, Yuan R, Chai Y, Zhong X, Liu Y, Dai J. Electrochemical detection of hepatitis B surface antigen using colloidal gold nanoparticles modified by a sol-gel network interface. Clinical. Biochem. 2006. 39:309–14.10.1016/j.clinbiochem.2005.12.003Suche in Google Scholar PubMed
[261] Wu S, Zhong Z, Wang D et al. Gold nanoparticle-labeled detection antibodies for use in an enhanced electrochemical immunoassay of hepatitis B surface antigen in human serum. Microchim Acta. 2009;166:269–75.10.1007/s00604-009-0184-9Suche in Google Scholar
[262] Yuan R, Tang D, Chai Y, Zhong X, Liu Y, Dai J. Ultrasensitive potentiometric immunosensor based on SA and OCA techniques for immobilization of HBsAb with colloidal Au and polyvinyl butyral as matrixes. Langmuir. 2004;20:7240–5.10.1021/la030428mSuche in Google Scholar PubMed
[263] Lin J, He C, Pang X, Hu K. Amperometric immunosensor for prostate specific antigen based on gold nanoparticles/ionic liquid/chitosan hybrid film. Anal Lett. 2011;44:908–21.10.1080/00032711003790049Suche in Google Scholar
[264] Lin J, He C, Zhang L, Zhang S. Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal Biochem. 2009;384:130–5.10.1016/j.ab.2008.09.033Suche in Google Scholar PubMed
[265] Li N, Yuan R, Chai Y, Chen S, An H, Li W. New antibody immobilization strategy based on gold nanoparticles and Azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor. J Phys Chem C. 2007;111:8443–50.10.1021/jp068610uSuche in Google Scholar
[266] Ho JA, Chang H-C, Shih N-Y et al. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal Chem. 2010;82:5944–50.10.1021/ac1001959Suche in Google Scholar PubMed
[267] Serafin V, Eguilaz M, Agui L, Yanez-Sedeno P, Pingarron JM. An electrochemical immunosensor for testosterone using gold nanoparticles – carbon nanotubes composite electrodes. Electroanalysis. 2011;23:169–76.10.1002/elan.201000419Suche in Google Scholar
[268] Zhang Y, Xiang Y, Chai Y, et al. Gold nanolabels and enzymatic recycling dual amplification-based electrochemical immunosensor for the highly sensitive detection of carcinoembryonic antigen. Sci. China: Chem. 2011;54:1770–6.10.1007/s11426-011-4373-0Suche in Google Scholar
[269] Tang D, Yuan R, Chai Y. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem. 2008;80:1582–8.10.1021/ac702217mSuche in Google Scholar PubMed
[270] West N, Baker PGL, Arotiba OA, et al. Overoxidized polypyrrole incorporated with gold nanoparticles as platform for impedimetric anti-transglutaminase immunosensor. Anal Lett. 2011;44:1956–66.10.1080/00032719.2010.539739Suche in Google Scholar
[271] Kannan P, Tiong HY, Kim D-H. Highly sensitive electrochemical determination of neutrophil gelatinase-associated lipocalin for acute kidney injury. Biosens Bioelectron. 2012;31:32–6.10.1016/j.bios.2011.09.036Suche in Google Scholar PubMed
[272] Zhang J, Lei J, Pan R, Leng C, Hu Z, Ju H. In situ assembly of gold nanoparticles on nitrogen-doped carbon nanotubes for sensitive immunosensing of microcystin-LR. Chem Commun. 2011;47:668–70.10.1039/C0CC04198JSuche in Google Scholar
[273] Liu G, Wang J, Kim J, Jan MR, Collins GE. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem. 2005;76:7126–30.10.1021/ac049107lSuche in Google Scholar PubMed
[274] Lai G, Yan F, Wu J, Leng C, Ju H. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal Chem. 2011;83:2726–32.10.1021/ac103283pSuche in Google Scholar PubMed
[275] Tang J, Tang D, Niessner R, Chen G, Knopp D. Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem. 2011;83:5407–14.10.1021/ac200969wSuche in Google Scholar PubMed
[276] Afonso AS, Perez-Lopez B, Faria RC, et al. Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron. 2013;40:121–6.10.1016/j.bios.2012.06.054Suche in Google Scholar PubMed
[277] Chen G-Z, Yin Z-Z, Lou J-F. Electrochemical immunoassay of Escherichia coli O157:H7 using Ag@SiO2 nanoparticles as labels. J Anal Methods Chem. 2014;2014:231–45.Suche in Google Scholar
[278] Zhang X, Zhang F, Zhang H, Shen J, Han E, Dong X. Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product. Talanta. 2015;132:600–5.10.1016/j.talanta.2014.10.013Suche in Google Scholar PubMed
[279] Vikesland PJ, Wigginton KR. Nanomaterial enabled biosensors for pathogen monitoring – A review. Environ Sci Technol. 2010;44:3656–69.10.1021/es903704zSuche in Google Scholar PubMed
[280] Wu L, Gao B, Zhang F, Sun X, Zhang Y, Li Z. A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talanta. 2013;106:360–6.10.1016/j.talanta.2012.12.053Suche in Google Scholar PubMed
[281] Kozitsina A, Svalova T, Malysheva N, Glazyrina Y, Matern A. A new enzyme-free electrochemical immunoassay for Escherichia coli detection using magnetic nanoparticles. Anal Lett. 2016;49:245–57.10.1080/00032719.2015.1072824Suche in Google Scholar
[282] Ibii T, Kaieda M, Hatakeyama S, et al. Direct immobilization of gold-binding antibody fragments for immunosensor applications. Anal Chem. 2010;82:4229–35.10.1021/ac100557kSuche in Google Scholar PubMed
[283] Gu H-Y, Yu A-M, Chen H-Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem. 2001;516:119–26.10.1016/S0022-0728(01)00669-6Suche in Google Scholar
[284] Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18:319–26.10.1002/elan.200503415Suche in Google Scholar
[285] Presnova GV, Rubtsova MYu, Shumyantseva VV, Bulko TV, Egorov AM. Comparative immobilization of antibodies on modified screen-printed graphite electrodes. Moscow Univ Chem Bull (Engl transl). 2008;63:71–4.10.3103/S0027131408020053Suche in Google Scholar
[286] Varshney M, Yang L, Su X-L, Li Y. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J Food Prot. 2005;68:1804–11.10.4315/0362-028X-68.9.1804Suche in Google Scholar PubMed
[287] Биосенсоры: основы и приложения. Под ред. Э. Тёрнера, И. Карубе, Дж. Уилсона. М.: Мир, 1992. 614 c. (Turner A, Karube I, Wilson G, eds. Biosensors: Fundamentals and Applications. Moscow, Mir, 1992, 614, original source in Russian).Suche in Google Scholar
[288] Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron. 2014;54:393–407.10.1016/j.bios.2013.11.011Suche in Google Scholar PubMed
[289] Ravalli A, Marrazza G. Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J Nanosci Nanotechnol. 2015;15:3307–19.10.1166/jnn.2015.10038Suche in Google Scholar PubMed
[290] Kumar S, Ahlawat W, Kumar R, Dilbaghi N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron. 2015;70:498–503.10.1016/j.bios.2015.03.062Suche in Google Scholar PubMed
[291] Sharma A, Rao VK, Kamboj DV, Gaur R, Upadhyay S, Shaik M. Relative efficiency of zinc sulfide (ZnS) quantum dots (QDs) based electrochemical and fluorescence immunoassay for the detection of Staphylococcal enterotoxin B (SEB). Biotechnol Rep. 2015;6:129–36.10.1016/j.btre.2015.02.004Suche in Google Scholar PubMed PubMed Central
[292] Brainina K, Kozitsina A, Beikin J. Electrochemical immunosensor for Forest-Spring encephalitis based on protein a labeled with colloidal gold. Anal Bional Chem. 2003;376:481–5.10.1007/s00216-003-1912-3Suche in Google Scholar PubMed
[293] Park H-Y, Schadt MJ, Wang L, et al. Fabrication of magnetic core @Shell Fe Oxide@ Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir. 2007;23:9050–6.10.1021/la701305fSuche in Google Scholar PubMed
[294] Tamer U, Gundogdu Y, Boyaci IH, Pekmez K. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res. 2010;12:1187–96.10.1007/s11051-009-9749-0Suche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Nanomaterials: Electrochemical Properties and Application in Sensors
- CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol
- Transition metal-catalyzed dehydrogenation of amines
- Optical properties of monolayer BeC under an external electric field: A DFT approach
- Archaeological investigations (archaeometry)
- Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus
Artikel in diesem Heft
- Nanomaterials: Electrochemical Properties and Application in Sensors
- CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol
- Transition metal-catalyzed dehydrogenation of amines
- Optical properties of monolayer BeC under an external electric field: A DFT approach
- Archaeological investigations (archaeometry)
- Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus