Abstract
The reuse of agricultural waste and the development of bio-based materials are the main strategies for solving the global energy crisis and environmental problems. Agricultural waste reeds containing natural nano-silica (SiO2) were liquefied with PEG-400, Castor oil, and acid to produce reed-based polyols (R–P). The result shows that the liquefied product is a polyol with a hydroxyl value of 171 mgKOH/g, a viscosity of 1.221 Pa S, the number average molecular weight (Mn) of 1.202 kg/mol. Then reed-based two-component polyurethane emulsion (R-T-PU) and reed-based one-component waterborne polyurethane emulsion (R-O-WPU) with good glossiness and excellent mechanical properties were prepared. Because of the natural nano-SiO2 in reed and castor oil, the coatings exhibit excellent mechanical properties and hydrophobicity. The results show that the series of reed-based polyurethane has excellent mechanical properties, a maximum hardness of 6H, good hydrophobic effect, a maximum contact angle of 109°, high thermal stability, and a maximum initial decomposition temperature can reach 299.1 °C. Therefore, the environmental protection bio-based polyurethane coating with excellent properties can be prepared with the reed, which is expected to replace fossil resources. It provides an experimental basis for the high-added-value utilization of reed.
Funding source: Hebei Provincial Key Laboratory of Analytical Science and Technology
Award Identifier / Grant number: 22567620H
Funding source: The multidisciplinary research project of Hebei University
Award Identifier / Grant number: DXK202003
Funding source: Higher Education Science and Technology Research Project of Hebei Province, China
Award Identifier / Grant number: ZD2019022
Funding source: Science and technology projects of Baoding
Award Identifier / Grant number: 1911Q002
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: We thank the following funders for financial support: Hebei Provincial Key Laboratory of Analytical Science and Technology (22567620H); the Higher Education Science and Technology Research Project of Hebei Province, China (ZD2019022); Hebei Provincial Key Laboratory of Analytical Science and Technology (22567620H); Science and technology projects of Baoding (1911Q002); The multidisciplinary research project of Hebei University (DXK202003).
-
Data availability: The raw data can be obtained on request from the corresponding authors.
References
1. Jo, Y. J.; Ly, H. V.; Kim, J.; Kim, S.-S.; Lee, E. Preparation of Biopolyol by Liquefaction of Palm Kernel Cake Using PEG#400 Blended Glycerol. J. Ind. Eng. Chem. 2015, 29, 304–313; https://doi.org/10.1016/j.jiec.2015.04.010.Search in Google Scholar
2. Feng, J.; Jiang, J.; Hse, C.-y.; Yang, Z.; Wang, K.; Ye, J.; Xu, J. Selective Catalytic Conversion of Waste Lignocellulosic Biomass for Renewable Value-Added Chemicals via Directional Microwave-Assisted Liquefaction. Sustainable Energy Fuels 2018, 2, 1035–1047; https://doi.org/10.1039/c7se00579b.Search in Google Scholar
3. Yin, X.; Dong, C.; Chai, C.; Luo, Y. Thermostability and Flame Retardance of Green Functional Two-Component Waterborne Polyurethane Coatings with Nanoparticles. Prog. Org. Coat. 2018, 122, 119–128; https://doi.org/10.1016/j.porgcoat.2018.01.027.Search in Google Scholar
4. Llevot, A.; Dannecker, P. K.; von Czapiewski, M.; Over, L. C.; Söyler, Z.; Meier, M. A. R. Renewability Is Not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers. Chem. Eur. J. 2016, 22, 11510–11521; https://doi.org/10.1002/chem.201602068.Search in Google Scholar PubMed
5. Jasiūnas, L.; McKenna, S. T.; Bridžiuvienė, D.; Mechanical, M. L. Thermal Properties and Stability of Rigid Polyurethane Foams Produced with Crude-Glycerol Derived Biomass Biopolyols. J. Polym. Environ. 2020, 28, 1378–1389; https://doi.org/10.1007/s10924-020-01686-y.Search in Google Scholar
6. Zheng, Z.-q.; Wang, L.-j.; Li, D.; Huang, Z.-g.; Adhikari, B.; Chen, X. D. Mechanical and Thermal Properties of Polyurethane Foams from Liquefied Sugar Beet Pulp. Int. J. Food Eng. 2016, 12, 911–919; https://doi.org/10.1515/ijfe-2016-0166.Search in Google Scholar
7. Zhang, J.; Hori, N.; Takemura, A. Optimization of Preparation Process to Produce Polyurethane Foam Made by Oilseed Rape Straw Based Polyol. Polym. Degrad. Stab. 2019, 166, 31–39; https://doi.org/10.1016/j.polymdegradstab.2019.05.022.Search in Google Scholar
8. Li, H.; Feng, S.; Yuan, Z.; Wei, Q.; Xu, C. C. Highly Efficient Liquefaction of Wheat Straw for the Production of Bio-Polyols and Bio-Based Polyurethane Foams. Ind. Crops Prod. 2017, 109, 426–433; https://doi.org/10.1016/j.indcrop.2017.08.060.Search in Google Scholar
9. Xie, J.; Zhai, X.; Hse, C.; Shupe, T.; Pan, H. Polyols from Microwave Liquefied Bagasse and its Application to Rigid Polyurethane Foam. Mater 2015, 8, 8496–8509; https://doi.org/10.3390/ma8125472.Search in Google Scholar PubMed PubMed Central
10. Kim, K. H.; Yu, J.-H.; Lee, E. Y. Crude Glycerol-Mediated Liquefaction of Saccharification Residues of Sunflower Stalks for Production of Lignin Biopolyols. J. Ind. Eng. Chem. 2016, 38, 175–180; https://doi.org/10.1016/j.jiec.2016.05.002.Search in Google Scholar
11. Lee, W.-J.; Chao, C.-Y. Effect of Containing Polyhydric Alcohol Liquefied Wood on the Properties of Thermoplastic Polyurethane Resins. Eur. J. Wood Wood Prod. 2018, 76, 1745–1752; https://doi.org/10.1007/s00107-018-1338-4.Search in Google Scholar
12. Rastegarfar, N.; Behrooz, R.; Barikani, M. Characterization of Polyurethane Foams Prepared from Liquefied Sawdust by Crude Glycerol and Polyethylene Glycol. J. Polym. Res. 2018, 25, 1–8; https://doi.org/10.1007/s10965-018-1516-4.Search in Google Scholar
13. Vasmara, C.; Cianchetta, S.; Marchetti, R.; Ceotto, E.; Galletti, S. Potassium Hydroxyde Pre-treatment Enhances Methane Yield from Giant Reed (Arundo donax L.). Energies 2021, 14, 630–642; https://doi.org/10.3390/en14030630.Search in Google Scholar
14. Boga, K.; Gaddam, S. K.; Chepuri, R. R.; Palanisamy, A. Development of Biobased Polyurethane-imides from Maleinized Cottonseed Oil and castor Oil. Polym. Adv. Technol. 2019, 30, 2742–2749; https://doi.org/10.1002/pat.4705.Search in Google Scholar
15. Siyanbola, T. O.; Enishetty, R.; Kumar, R.; James, O. O.; Olasehinde, G. I.; Kaki, S.; Narayan, R.; Raju, K. V. S. N. Specific Crosslinking Effects of Poly(epichlorohydrin)-Triol on Urethane Polymer Matrix of castor Seed Oil-Based Coatings. J. Coat. Technol. Res. 2020, 18, 129–141; https://doi.org/10.1007/s11998-020-00387-4.Search in Google Scholar
16. Hussain, S. A.; Jain, R.; Manchikanti, S.; Krishnamoorthy, K.; Kumar, B. D.; Rahaman, A.; Agashe, S.; Rehaan Chandan, M. Reinstating Structural Stability of Castor Oil Based Flexible Polyurethane Foam Using Glycerol. ChemistrySelect 2020, 5, 3959–3964; https://doi.org/10.1002/slct.202000784.Search in Google Scholar
17. Wei, D.; Huang, X.; Zeng, J.; Deng, S.; Xu, J. Facile Synthesis of a castor Oil-based Hyperbranched Acrylate Oligomer and its Application in UV-curable Coatings. J. Appl. Polym. Sci. 2020, 137, 49054–49066; https://doi.org/10.1002/app.49054.Search in Google Scholar
18. Tran, T. K.; Kumar, P.; Kim, H. R.; Hou, C. T.; Kim, B. S. Bio-Based Polyurethanes from Microbially Converted Castor Oil. J. Am. Oil Chem. Soc. 2019, 96, 715–726; https://doi.org/10.1002/aocs.12223.Search in Google Scholar
19. Chen, S.; Li, W.; Qu, B.; Liu, X.; Wang, R.; Zhuo, D.; Wu, L. Synthesis of High-Purity SiC Nanowires via Catalyst-free Pyrolysis of SiO2/Si and Sponge-like Graphene Oxide. ACS Omega 2020, 5, 25319–25325; https://doi.org/10.1021/acsomega.0c03619.Search in Google Scholar PubMed PubMed Central
20. Ogunniyi, D. Castor Oil: A Vital Industrial Raw Material. Bioresour. Technol. 2006, 97, 1086–1091; https://doi.org/10.1016/j.biortech.2005.03.028.Search in Google Scholar PubMed
21. Mohanty, D.; Mohanty, S.; Kanny, K. Synthesis of castor Oil-based Polyols Applicable in Acrylated Polyurethane Coating with Improved Mechanical Properties. Polym. Int. 2022, 72, 230–242; https://doi.org/10.1002/pi.6462.Search in Google Scholar
22. Zhang, S.; Chu, F.; Zhou, Y.; Xu, Z.; Jiang, X.; Luo, X.; Yuan, G.; Hu, Y.; Hu, W. High-performance Flexible Polyurethane from Renewable castor Oil: Preparation, Properties and Mechanism. Composites, Part A 2022, 159, 107034.10.1016/j.compositesa.2022.107034Search in Google Scholar
23. Sardari, A.; Sabbagh Alvani, A. A.; Ghaffarian, S. R. Castor Oil-Derived Water-Based Polyurethane Coatings: Structure Manipulation for Property Enhancement. Prog. Org. Coat. 2019, 133, 198–205; https://doi.org/10.1016/j.porgcoat.2019.04.030.Search in Google Scholar
24. Xie, T.; Chen, F. Fast Liquefaction of Bagasse in Ethylene Carbonate and Preparation of Epoxy Resin from the Liquefied Product. J. Appl. Polym. Sci. 2005, 98, 1961–1968; https://doi.org/10.1002/app.22370.Search in Google Scholar
25. Wang, S.; Hu, Z.; Shi, J.; Chen, G.; Zhang, Q.; Weng, Z.; Wu, K.; Lu, M. Green Synthesis of Graphene with the Assistance of Modified Lignin and its Application in Anticorrosive Waterborne Epoxy Coatings. Appl. Surf. Sci. 2019, 484, 759–770; https://doi.org/10.1016/j.apsusc.2019.03.229.Search in Google Scholar
26. de Haro, J. C.; Allegretti, C.; Smit, A. T.; Turri, S.; D’Arrigo, P.; Griffini, G. Biobased Polyurethane Coatings with High Biomass Content: Tailored Properties by Lignin Selection. ACS Sustainable Chem. Eng. 2019, 7, 11700–11711; https://doi.org/10.1021/acssuschemeng.9b01873.Search in Google Scholar
27. Chamú-Muñoz, A.; Hernández-Meléndez, O.; Hernández-Luna, M.; Alcaraz-Cienfuegos, J.; Vivaldo-Lima, E.; Bárzana, E. Ethylene Carbonate Used as Reagent and Green Solvent in the Chemical Modification of Corncob. Macromol. Mater. Eng. 2015, 300, 810–822; https://doi.org/10.1002/mame.201500001.Search in Google Scholar
28. Divakaran, A. V.; Torris, At A.; Lele, A. K.; Badiger, M. V. Porous Poly(ethylene Glycol)-Polyurethane Hydrogels as Potential Biomaterials. Polym. Int. 2015, 64, 397–404; https://doi.org/10.1002/pi.4802.Search in Google Scholar
29. Hu, S.; Luo, X.; Li, Y. Polyols and Polyurethanes from the Liquefaction of Lignocellulosic Biomass. ChemSusChem 2013, 7, 66–72; https://doi.org/10.1002/cssc.201300760.Search in Google Scholar PubMed
30. Jiao, X.; Zhang, W.; Wu, R.; Ma, H.; Jiao, Y.; Huo, L. Preparation and Intrinsical Flame Resistance of Reed-Based Polyurethane Foam Modified by 9,10-Dihydro-9-Oxa-10 Phosphaphenanthrene 10-oxide. J. Cell. Plast. 2024, 60, 183–197; https://doi.org/10.1177/0021955x241242967.Search in Google Scholar
31. Li, H.; Sun, J.-T.; Wang, C.; Liu, S.; Yuan, D.; Zhou, X.; Tan, J.; Stubbs, L.; He, C. High Modulus, Strength, and Toughness Polyurethane Elastomer Based on Unmodified Lignin. ACS Sustainable Chem. Eng. 2017, 5, 7942–7949; https://doi.org/10.1021/acssuschemeng.7b01481.Search in Google Scholar
32. Cao, J.; Fan, H.; Wang, C.; Ma, J.; Dong, G.; Zhang, M. Facile Synthesis of Carbon Self-Doped G-C3n4 for Enhanced Photocatalytic Hydrogen Evolution. Ceram. Int. 2020, 46, 7888–7895; https://doi.org/10.1016/j.ceramint.2019.12.008.Search in Google Scholar
33. Culebras, M.; Beaucamp, A.; Wang, Y.; Clauss, M. M.; Frank, E.; Collins, M. N. Biobased Structurally Compatible Polymer Blends Based on Lignin and Thermoplastic Elastomer Polyurethane as Carbon Fiber Precursors. ACS Sustainable Chem. Eng. 2018, 6, 8816–8825; https://doi.org/10.1021/acssuschemeng.8b01170.Search in Google Scholar
34. Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S. K. Synthesis and Characterization of Petroleum and Biobased Epoxy Resins: a Review. Polym. Int. 2018, 67, 815–839; https://doi.org/10.1002/pi.5575.Search in Google Scholar
35. Gang, H.; Lee, D.; Choi, K.-Y.; Kim, H.-N.; Ryu, H.; Lee, D.-S.; Kim, B.-G. Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass. ACS Sustainable Chem. Eng. 2017, 5, 4582–4588; https://doi.org/10.1021/acssuschemeng.6b02960.Search in Google Scholar
36. Yuan, H.; Pan, Y.; Wang, X.; Chen, Q.; Hu, Q.; Shao, C.; Guo, Z.; Liu, C.; Shen, C.; Liu, X. Simple Water Tunable Polyurethane Microsphere for Super-hydrophobic Dip-Coating and Oil-Water Separation. Polym 2020, 204; https://doi.org/10.1016/j.polymer.2020.122833.Search in Google Scholar
37. Zhao, W.; Feng, Z.; Liang, Z.; Lv, Y.; Xiang, F.; Xiong, C.; Duan, C.; Dai, L.; Ni, Y. Vitrimer-Cellulose Paper Composites: A New Class of Strong, Smart, Green, and Sustainable Materials. ACS Appl. Mater. Interfaces 2019, 11, 36090–36099; https://doi.org/10.1021/acsami.9b11991.Search in Google Scholar PubMed
38. Zhou, H.; Liu, Y.; Zhang, M.; Lu, Y.; Arnett, L. P.; Soleimani, M.; Winnik, M. A. Characterization of an Aqueous Dispersion of a Hydrophilic Polyisocyanate for Waterborne Two-Pack Polyurethane Coatings. ACS Appl. Polym. Mater. 2020, 2, 1491–1499; https://doi.org/10.1021/acsapm.9b01173.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
- Synthesis and properties of reed-based polyurethane (PU) coating
- Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
- Preparation and Assembly
- Hydrogel for slow-release drug delivery in wound treatment
- Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure
- Development of MXene-based flexible piezoresistive sensors
- Engineering and Processing
- ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications
- Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene
Articles in the same Issue
- Frontmatter
- Material Properties
- Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
- Synthesis and properties of reed-based polyurethane (PU) coating
- Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel
- Preparation and Assembly
- Hydrogel for slow-release drug delivery in wound treatment
- Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure
- Development of MXene-based flexible piezoresistive sensors
- Engineering and Processing
- ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications
- Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene