Home Synthesis and properties of reed-based polyurethane (PU) coating
Article
Licensed
Unlicensed Requires Authentication

Synthesis and properties of reed-based polyurethane (PU) coating

  • Ruiying Wu , Meng Chen , Wenjing Zhang , Wenqing Yang , Libin Bai EMAIL logo and Li Huo EMAIL logo
Published/Copyright: September 2, 2024
Become an author with De Gruyter Brill

Abstract

The reuse of agricultural waste and the development of bio-based materials are the main strategies for solving the global energy crisis and environmental problems. Agricultural waste reeds containing natural nano-silica (SiO2) were liquefied with PEG-400, Castor oil, and acid to produce reed-based polyols (R–P). The result shows that the liquefied product is a polyol with a hydroxyl value of 171 mgKOH/g, a viscosity of 1.221 Pa S, the number average molecular weight (Mn) of 1.202 kg/mol. Then reed-based two-component polyurethane emulsion (R-T-PU) and reed-based one-component waterborne polyurethane emulsion (R-O-WPU) with good glossiness and excellent mechanical properties were prepared. Because of the natural nano-SiO2 in reed and castor oil, the coatings exhibit excellent mechanical properties and hydrophobicity. The results show that the series of reed-based polyurethane has excellent mechanical properties, a maximum hardness of 6H, good hydrophobic effect, a maximum contact angle of 109°, high thermal stability, and a maximum initial decomposition temperature can reach 299.1 °C. Therefore, the environmental protection bio-based polyurethane coating with excellent properties can be prepared with the reed, which is expected to replace fossil resources. It provides an experimental basis for the high-added-value utilization of reed.


Corresponding authors: Libin Bai and Li Huo, College of Chemistry & Materials Science, Hebei Provincial Key Laboratory of Analytical Science and Technology, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R.China, E-mail: (L. Bai), (L. Huo).

Funding source: Hebei Provincial Key Laboratory of Analytical Science and Technology

Award Identifier / Grant number: 22567620H

Funding source: The multidisciplinary research project of Hebei University

Award Identifier / Grant number: DXK202003

Funding source: Higher Education Science and Technology Research Project of Hebei Province, China

Award Identifier / Grant number: ZD2019022

Funding source: Science and technology projects of Baoding

Award Identifier / Grant number: 1911Q002

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: We thank the following funders for financial support: Hebei Provincial Key Laboratory of Analytical Science and Technology (22567620H); the Higher Education Science and Technology Research Project of Hebei Province, China (ZD2019022); Hebei Provincial Key Laboratory of Analytical Science and Technology (22567620H); Science and technology projects of Baoding (1911Q002); The multidisciplinary research project of Hebei University (DXK202003).

  5. Data availability: The raw data can be obtained on request from the corresponding authors.

References

1. Jo, Y. J.; Ly, H. V.; Kim, J.; Kim, S.-S.; Lee, E. Preparation of Biopolyol by Liquefaction of Palm Kernel Cake Using PEG#400 Blended Glycerol. J. Ind. Eng. Chem. 2015, 29, 304–313; https://doi.org/10.1016/j.jiec.2015.04.010.Search in Google Scholar

2. Feng, J.; Jiang, J.; Hse, C.-y.; Yang, Z.; Wang, K.; Ye, J.; Xu, J. Selective Catalytic Conversion of Waste Lignocellulosic Biomass for Renewable Value-Added Chemicals via Directional Microwave-Assisted Liquefaction. Sustainable Energy Fuels 2018, 2, 1035–1047; https://doi.org/10.1039/c7se00579b.Search in Google Scholar

3. Yin, X.; Dong, C.; Chai, C.; Luo, Y. Thermostability and Flame Retardance of Green Functional Two-Component Waterborne Polyurethane Coatings with Nanoparticles. Prog. Org. Coat. 2018, 122, 119–128; https://doi.org/10.1016/j.porgcoat.2018.01.027.Search in Google Scholar

4. Llevot, A.; Dannecker, P. K.; von Czapiewski, M.; Over, L. C.; Söyler, Z.; Meier, M. A. R. Renewability Is Not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers. Chem. Eur. J. 2016, 22, 11510–11521; https://doi.org/10.1002/chem.201602068.Search in Google Scholar PubMed

5. Jasiūnas, L.; McKenna, S. T.; Bridžiuvienė, D.; Mechanical, M. L. Thermal Properties and Stability of Rigid Polyurethane Foams Produced with Crude-Glycerol Derived Biomass Biopolyols. J. Polym. Environ. 2020, 28, 1378–1389; https://doi.org/10.1007/s10924-020-01686-y.Search in Google Scholar

6. Zheng, Z.-q.; Wang, L.-j.; Li, D.; Huang, Z.-g.; Adhikari, B.; Chen, X. D. Mechanical and Thermal Properties of Polyurethane Foams from Liquefied Sugar Beet Pulp. Int. J. Food Eng. 2016, 12, 911–919; https://doi.org/10.1515/ijfe-2016-0166.Search in Google Scholar

7. Zhang, J.; Hori, N.; Takemura, A. Optimization of Preparation Process to Produce Polyurethane Foam Made by Oilseed Rape Straw Based Polyol. Polym. Degrad. Stab. 2019, 166, 31–39; https://doi.org/10.1016/j.polymdegradstab.2019.05.022.Search in Google Scholar

8. Li, H.; Feng, S.; Yuan, Z.; Wei, Q.; Xu, C. C. Highly Efficient Liquefaction of Wheat Straw for the Production of Bio-Polyols and Bio-Based Polyurethane Foams. Ind. Crops Prod. 2017, 109, 426–433; https://doi.org/10.1016/j.indcrop.2017.08.060.Search in Google Scholar

9. Xie, J.; Zhai, X.; Hse, C.; Shupe, T.; Pan, H. Polyols from Microwave Liquefied Bagasse and its Application to Rigid Polyurethane Foam. Mater 2015, 8, 8496–8509; https://doi.org/10.3390/ma8125472.Search in Google Scholar PubMed PubMed Central

10. Kim, K. H.; Yu, J.-H.; Lee, E. Y. Crude Glycerol-Mediated Liquefaction of Saccharification Residues of Sunflower Stalks for Production of Lignin Biopolyols. J. Ind. Eng. Chem. 2016, 38, 175–180; https://doi.org/10.1016/j.jiec.2016.05.002.Search in Google Scholar

11. Lee, W.-J.; Chao, C.-Y. Effect of Containing Polyhydric Alcohol Liquefied Wood on the Properties of Thermoplastic Polyurethane Resins. Eur. J. Wood Wood Prod. 2018, 76, 1745–1752; https://doi.org/10.1007/s00107-018-1338-4.Search in Google Scholar

12. Rastegarfar, N.; Behrooz, R.; Barikani, M. Characterization of Polyurethane Foams Prepared from Liquefied Sawdust by Crude Glycerol and Polyethylene Glycol. J. Polym. Res. 2018, 25, 1–8; https://doi.org/10.1007/s10965-018-1516-4.Search in Google Scholar

13. Vasmara, C.; Cianchetta, S.; Marchetti, R.; Ceotto, E.; Galletti, S. Potassium Hydroxyde Pre-treatment Enhances Methane Yield from Giant Reed (Arundo donax L.). Energies 2021, 14, 630–642; https://doi.org/10.3390/en14030630.Search in Google Scholar

14. Boga, K.; Gaddam, S. K.; Chepuri, R. R.; Palanisamy, A. Development of Biobased Polyurethane-imides from Maleinized Cottonseed Oil and castor Oil. Polym. Adv. Technol. 2019, 30, 2742–2749; https://doi.org/10.1002/pat.4705.Search in Google Scholar

15. Siyanbola, T. O.; Enishetty, R.; Kumar, R.; James, O. O.; Olasehinde, G. I.; Kaki, S.; Narayan, R.; Raju, K. V. S. N. Specific Crosslinking Effects of Poly(epichlorohydrin)-Triol on Urethane Polymer Matrix of castor Seed Oil-Based Coatings. J. Coat. Technol. Res. 2020, 18, 129–141; https://doi.org/10.1007/s11998-020-00387-4.Search in Google Scholar

16. Hussain, S. A.; Jain, R.; Manchikanti, S.; Krishnamoorthy, K.; Kumar, B. D.; Rahaman, A.; Agashe, S.; Rehaan Chandan, M. Reinstating Structural Stability of Castor Oil Based Flexible Polyurethane Foam Using Glycerol. ChemistrySelect 2020, 5, 3959–3964; https://doi.org/10.1002/slct.202000784.Search in Google Scholar

17. Wei, D.; Huang, X.; Zeng, J.; Deng, S.; Xu, J. Facile Synthesis of a castor Oil-based Hyperbranched Acrylate Oligomer and its Application in UV-curable Coatings. J. Appl. Polym. Sci. 2020, 137, 49054–49066; https://doi.org/10.1002/app.49054.Search in Google Scholar

18. Tran, T. K.; Kumar, P.; Kim, H. R.; Hou, C. T.; Kim, B. S. Bio-Based Polyurethanes from Microbially Converted Castor Oil. J. Am. Oil Chem. Soc. 2019, 96, 715–726; https://doi.org/10.1002/aocs.12223.Search in Google Scholar

19. Chen, S.; Li, W.; Qu, B.; Liu, X.; Wang, R.; Zhuo, D.; Wu, L. Synthesis of High-Purity SiC Nanowires via Catalyst-free Pyrolysis of SiO2/Si and Sponge-like Graphene Oxide. ACS Omega 2020, 5, 25319–25325; https://doi.org/10.1021/acsomega.0c03619.Search in Google Scholar PubMed PubMed Central

20. Ogunniyi, D. Castor Oil: A Vital Industrial Raw Material. Bioresour. Technol. 2006, 97, 1086–1091; https://doi.org/10.1016/j.biortech.2005.03.028.Search in Google Scholar PubMed

21. Mohanty, D.; Mohanty, S.; Kanny, K. Synthesis of castor Oil-based Polyols Applicable in Acrylated Polyurethane Coating with Improved Mechanical Properties. Polym. Int. 2022, 72, 230–242; https://doi.org/10.1002/pi.6462.Search in Google Scholar

22. Zhang, S.; Chu, F.; Zhou, Y.; Xu, Z.; Jiang, X.; Luo, X.; Yuan, G.; Hu, Y.; Hu, W. High-performance Flexible Polyurethane from Renewable castor Oil: Preparation, Properties and Mechanism. Composites, Part A 2022, 159, 107034.10.1016/j.compositesa.2022.107034Search in Google Scholar

23. Sardari, A.; Sabbagh Alvani, A. A.; Ghaffarian, S. R. Castor Oil-Derived Water-Based Polyurethane Coatings: Structure Manipulation for Property Enhancement. Prog. Org. Coat. 2019, 133, 198–205; https://doi.org/10.1016/j.porgcoat.2019.04.030.Search in Google Scholar

24. Xie, T.; Chen, F. Fast Liquefaction of Bagasse in Ethylene Carbonate and Preparation of Epoxy Resin from the Liquefied Product. J. Appl. Polym. Sci. 2005, 98, 1961–1968; https://doi.org/10.1002/app.22370.Search in Google Scholar

25. Wang, S.; Hu, Z.; Shi, J.; Chen, G.; Zhang, Q.; Weng, Z.; Wu, K.; Lu, M. Green Synthesis of Graphene with the Assistance of Modified Lignin and its Application in Anticorrosive Waterborne Epoxy Coatings. Appl. Surf. Sci. 2019, 484, 759–770; https://doi.org/10.1016/j.apsusc.2019.03.229.Search in Google Scholar

26. de Haro, J. C.; Allegretti, C.; Smit, A. T.; Turri, S.; D’Arrigo, P.; Griffini, G. Biobased Polyurethane Coatings with High Biomass Content: Tailored Properties by Lignin Selection. ACS Sustainable Chem. Eng. 2019, 7, 11700–11711; https://doi.org/10.1021/acssuschemeng.9b01873.Search in Google Scholar

27. Chamú-Muñoz, A.; Hernández-Meléndez, O.; Hernández-Luna, M.; Alcaraz-Cienfuegos, J.; Vivaldo-Lima, E.; Bárzana, E. Ethylene Carbonate Used as Reagent and Green Solvent in the Chemical Modification of Corncob. Macromol. Mater. Eng. 2015, 300, 810–822; https://doi.org/10.1002/mame.201500001.Search in Google Scholar

28. Divakaran, A. V.; Torris, At A.; Lele, A. K.; Badiger, M. V. Porous Poly(ethylene Glycol)-Polyurethane Hydrogels as Potential Biomaterials. Polym. Int. 2015, 64, 397–404; https://doi.org/10.1002/pi.4802.Search in Google Scholar

29. Hu, S.; Luo, X.; Li, Y. Polyols and Polyurethanes from the Liquefaction of Lignocellulosic Biomass. ChemSusChem 2013, 7, 66–72; https://doi.org/10.1002/cssc.201300760.Search in Google Scholar PubMed

30. Jiao, X.; Zhang, W.; Wu, R.; Ma, H.; Jiao, Y.; Huo, L. Preparation and Intrinsical Flame Resistance of Reed-Based Polyurethane Foam Modified by 9,10-Dihydro-9-Oxa-10 Phosphaphenanthrene 10-oxide. J. Cell. Plast. 2024, 60, 183–197; https://doi.org/10.1177/0021955x241242967.Search in Google Scholar

31. Li, H.; Sun, J.-T.; Wang, C.; Liu, S.; Yuan, D.; Zhou, X.; Tan, J.; Stubbs, L.; He, C. High Modulus, Strength, and Toughness Polyurethane Elastomer Based on Unmodified Lignin. ACS Sustainable Chem. Eng. 2017, 5, 7942–7949; https://doi.org/10.1021/acssuschemeng.7b01481.Search in Google Scholar

32. Cao, J.; Fan, H.; Wang, C.; Ma, J.; Dong, G.; Zhang, M. Facile Synthesis of Carbon Self-Doped G-C3n4 for Enhanced Photocatalytic Hydrogen Evolution. Ceram. Int. 2020, 46, 7888–7895; https://doi.org/10.1016/j.ceramint.2019.12.008.Search in Google Scholar

33. Culebras, M.; Beaucamp, A.; Wang, Y.; Clauss, M. M.; Frank, E.; Collins, M. N. Biobased Structurally Compatible Polymer Blends Based on Lignin and Thermoplastic Elastomer Polyurethane as Carbon Fiber Precursors. ACS Sustainable Chem. Eng. 2018, 6, 8816–8825; https://doi.org/10.1021/acssuschemeng.8b01170.Search in Google Scholar

34. Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S. K. Synthesis and Characterization of Petroleum and Biobased Epoxy Resins: a Review. Polym. Int. 2018, 67, 815–839; https://doi.org/10.1002/pi.5575.Search in Google Scholar

35. Gang, H.; Lee, D.; Choi, K.-Y.; Kim, H.-N.; Ryu, H.; Lee, D.-S.; Kim, B.-G. Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass. ACS Sustainable Chem. Eng. 2017, 5, 4582–4588; https://doi.org/10.1021/acssuschemeng.6b02960.Search in Google Scholar

36. Yuan, H.; Pan, Y.; Wang, X.; Chen, Q.; Hu, Q.; Shao, C.; Guo, Z.; Liu, C.; Shen, C.; Liu, X. Simple Water Tunable Polyurethane Microsphere for Super-hydrophobic Dip-Coating and Oil-Water Separation. Polym 2020, 204; https://doi.org/10.1016/j.polymer.2020.122833.Search in Google Scholar

37. Zhao, W.; Feng, Z.; Liang, Z.; Lv, Y.; Xiang, F.; Xiong, C.; Duan, C.; Dai, L.; Ni, Y. Vitrimer-Cellulose Paper Composites: A New Class of Strong, Smart, Green, and Sustainable Materials. ACS Appl. Mater. Interfaces 2019, 11, 36090–36099; https://doi.org/10.1021/acsami.9b11991.Search in Google Scholar PubMed

38. Zhou, H.; Liu, Y.; Zhang, M.; Lu, Y.; Arnett, L. P.; Soleimani, M.; Winnik, M. A. Characterization of an Aqueous Dispersion of a Hydrophilic Polyisocyanate for Waterborne Two-Pack Polyurethane Coatings. ACS Appl. Polym. Mater. 2020, 2, 1491–1499; https://doi.org/10.1021/acsapm.9b01173.Search in Google Scholar

Received: 2024-05-29
Accepted: 2024-08-04
Published Online: 2024-09-02
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0109/pdf
Scroll to top button