Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
-
Wenwei Li
Abstract
The effect of epoxidized soybean oil (ESO) on homocrystallization (HC) and stereocomplex (SC) formation behavior of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) bends was investigated utilizing differential scanning calorimetry (DSC). Isothermal crystallization was performed on ESO/PLLA/PDLA blends with varying ESO contents (0, 5, 8, and 10 wt%) and temperatures (90 °C, 120 °C, and 150 °C) for a different duration (12.5, 25, and 125 min). It was found that the ESO could effectively inhibit HC crystallization and promote SC crystallization. For the sample without ESO (ESO-0), the isothermal crystallization temperature and duration had little effect on the melting behavior, whereas sample with 5 wt% ESO (ESO-5), HC crystallization decreased while SC crystallization continued to increase with increasing duration. Additionally, at higher crystallization temperatures with constant ESO content, the melting temperature of SC crystals did not significantly change, suggesting that ESO did not degrade PLLA/PDLA blends. These findings imply that ESO modifies crystallization kinetics, suppressing HC formation and enhancing SC formation, which could benefit for specific material properties and applications.
Funding source: Mahasarakham University
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This research project was financially supported by Mahasarakham University.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. https://doi.org/10.1016/j.addr.2016.03.010.Suche in Google Scholar PubMed
2. Im, S. H.; Im, D. H.; Park, S. J.; Chung, J. J.; Jung, Y.; Kim, S. H. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021, 26 (10), 2846. https://doi.org/10.3390/molecules26102846.Suche in Google Scholar PubMed PubMed Central
3. Luo, F.; Fortenberry, A.; Ren, J.; Qiang, Z. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Front. Chem. 2020, 8, 688. https://doi.org/10.3389/fchem.2020.00688.Suche in Google Scholar PubMed PubMed Central
4. Bai, H.; Deng, S.; Bai, D.; Zhang, Q.; Fu, Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromol. Rapid Commun. 2017, 38 (23), 1700454. https://doi.org/10.1002/marc.201700454.Suche in Google Scholar PubMed
5. Li, C.; Gong, W.; Deng, Z.; Yao, Z.; Meng, X.; Xin, Z. Fully Biodegradable Long-Chain Branched Polylactic Acid with High Crystallization Performance and Heat Resistance. Ind. Eng. Chem. Res. 2022, 61 (30), 10945–10954. https://doi.org/10.1021/acs.iecr.2c01276.Suche in Google Scholar
6. Kawamoto, N.; Sakai, A.; Horikoshi, T.; Urushihara, T.; Tobita, E. Nucleating Agent for Poly(L-Lactic Acid)—An Optimization of Chemical Structure of Hydrazide Compound for Advanced Nucleation Ability. J. Appl. Polym. Sci. 2007, 103 (1), 198–203. https://doi.org/10.1002/app.25109.Suche in Google Scholar
7. Srithep, Y.; Pholharn, D.; Worajittiphon, P.; Sriprateep, K.; Veang-In, O.; Morris, J. Toughening Polylactide Stereocomplex by Injection Molding With Thermoplastic Starch and Chain Extender. Polymers 2023, 15 (9), 2055. https://doi.org/10.3390/polym15092055.Suche in Google Scholar PubMed PubMed Central
8. Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of Crystal Morphology in Poly(L-Lactide) by Adding Nucleating Agent. Macromolecules 2011, 44 (6), 1233–1237. https://doi.org/10.1021/ma102439t.Suche in Google Scholar
9. Zhang, J.; Chen, Y.; Sewell, P. D.; Brook, M. Utilization of Softwood Lignin as Both Crosslinker and Reinforcing Agent in Silicone Elastomers. Green Chem. 2015, 17 (3), 1811–1819. https://doi.org/10.1039/c5gc90025e.Suche in Google Scholar
10. Ma, P.; Shen, T.; Xu, P.; Dong, W.; Lemstra, P. J.; Chen, M. Superior Performance of Fully Biobased Poly(Lactide) Via Stereocomplexation-Induced Phase Separation: Structure Versus Property. ACS Sustainable Chem. Eng. 2015, 3 (7), 1470–1478. https://doi.org/10.1021/acssuschemeng.5b00208.Suche in Google Scholar
11. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Stereocomplex Formation Between Enantiomeric Poly(Lactides). Macromolecules 1987, 20 (4), 904–906. https://doi.org/10.1021/ma00170a034.Suche in Google Scholar
12. Liu, C.; Han, Z.; Yan, X.; Yu, J.; Zhang, Q.; Wang, D.; Yan, D.; Zhang, H. Rheological and Mechanical Properties, Heat Resistance and Hydrolytic Degradation of Poly(Butylene Succinate-co-adipate)/Stereocomplex Polylactide Blends. J. Appl. Polym. Sci. 2023, 140 (21), e53884. https://doi.org/10.1002/app.53884.Suche in Google Scholar
13. Ali, F.; Chang, Y.-W.; Kang, S. C.; Yoon, J. Y. Thermal, Mechanical and Rheological Properties of Poly(Lactic Acid)/Epoxidized Soybean Oil Blends. Polym. Bull. 2009, 62, 91–98. https://doi.org/10.1007/s00289-008-1012-9.Suche in Google Scholar
14. Li, W.; Srithep, Y.; Shen, J.; Pholharn, D.; Sriprateep, K.; Worajittiphon, P.; Khoklang, N. Preferential Formation of the Stereocomplex Crystals of Poly(L-Lactide) and Poly(D-Lactide) Blend by Epoxidized Soybean Oil Under Nonisothermal Crystallization. Polym. Adv. Technol. 2024, 35 (1), e6278. https://doi.org/10.1002/pat.6278.Suche in Google Scholar
15. Esposito, L. H.; Marzocca, A. J. Highly Epoxidized Soybean Oil in Replacement of Mineral Oil for High Performance on Silica-Filled Tread Rubber Compounds. J. Elastomers Plast. 2022, 54 (1), 169–184. https://doi.org/10.1177/00952443211029.Suche in Google Scholar
16. Lv, T.; Li, J.; Huang, S.; Wen, H.; Li, H.; Chen, J.; Jiang, S. Synergistic Effects of Chain Dynamics and Enantiomeric Interaction on the Crystallization in PDLA/PLLA Mixtures. Polymer 2021, 222, 123648. https://doi.org/10.1016/j.polymer.2021.123648.Suche in Google Scholar
17. Raghunath, S.; Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. PLA/ESO/MWCNT Nanocomposite: A Study on Mechanical, Thermal and Electroactive Shape Memory Properties. J. Polym. Res. 2018, 25, 1–12. https://doi.org/10.1007/s10965-018-1523-5.Suche in Google Scholar
18. Han, Y.; Shi, J.; Mao, L.; Wang, Z.; Zhang, L. Improvement of Compatibility and Mechanical Performances of PLA/PBAT Composites with Epoxidized Soybean Oil as Compatibilizer. Ind. Eng. Chem. Res. 2020, 59 (50), 21779–21790. https://doi.org/10.1021/acs.iecr.0c04285.Suche in Google Scholar
19. Shi, Z.-Z.; Fan, Z.-Y.; Ma, L.; Gong, P.-J.; Bao, R.-Y.; Yang, M.-B.; Yang, W. Simultaneously Enhanced Stereocomplexation and Melt Strength by Dynamic Polylactide toward Heat-Resistant Green Foams. Macromolecules 2023, 56 (21), 8735–8746. https://doi.org/10.1021/acs.macromol.3c01595.Suche in Google Scholar
20. Bouti, M.; Irinislimane, N.; Belhaneche-Bensemra, N. Properties Investigation of Epoxidized Sunflower Oil as Bioplasticizer for Poly(Lactic Acid). J. Polym. Environ. 2022, 30 (1), 232–245. https://doi.org/10.1007/s10924-021-02194-3.Suche in Google Scholar
21. Bao, R.-Y.; Yang, W.; Jiang, W.-R.; Liu, Z.-Y.; Xie, B.-H.; Yang, M.-B. Polymorphism of Racemic Poly(L-Lactide)/Poly(D-Lactide) Blend: Effect of Melt and Cold Crystallization. J. Phys. Chem. B 2013, 117 (13), 3667–3674. https://doi.org/10.1021/jp311878f.Suche in Google Scholar PubMed
22. Nouri, S.; Dubois, C.; Lafleur, P. G. Homocrystal and Stereocomplex Formation Behavior of Polylactides with Different Branched Structures. Polymer 2015, 67, 227–239. https://doi.org/10.1016/j.polymer.2015.04.065.Suche in Google Scholar
23. Park, C. B.; Saeidlou, S.; Huneault, M. A.; LiPark, H. Effect of Nucleation and Plasticization on the Stereocomplex Formation between Enantiomeric Poly(Lactic Acid). Polymer 2013, 54 (21), 5762–5770. https://doi.org/10.1016/j.polymer.2013.08.031.Suche in Google Scholar
24. Xiao, H.; Li, P.; Ren, X.; Jiang, T.; Yeh, J. T. Isothermal Crystallization Kinetics and Crystal Structure of Poly(Lactic Acid): Effect of Triphenyl Phosphate and Talc. J. Appl. Polym. Sci. 2010, 118 (6), 3558–3569. https://doi.org/10.1002/app.32728.Suche in Google Scholar
25. Srithep, Y.; Nealey, P.; Turng, L. S. Effects of Annealing Time and Temperature on the Crystallinity and Heat Resistance Behavior of Injection-Molded Poly(Lactic Acid). Polym. Eng. Sci. 2013, 53 (3), 580–588. https://doi.org/10.1002/pen.23304.Suche in Google Scholar
26. Srithep, Y.; Pholharn, D. Plasticizer Effect on Melt Blending of Polylactide Stereocomplex. e-Polymers 2017, 17 (5), 409–416. https://doi.org/10.1515/epoly-2016-0331.Suche in Google Scholar
27. Pan, P.; Han, L.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y. Competitive Stereocomplexation, Homocrystallization, and Polymorphic Crystalline Transition in Poly(L-Lactic Acid)/Poly(D-Lactic Acid) Racemic Blends: Molecular Weight Effects. J. Phys. Chem. B 2015, 119 (21), 6462–6470. https://doi.org/10.1021/acs.jpcb.5b03546.Suche in Google Scholar PubMed
28. Xiong, Z.; Zhang, X.; Wang, R.; de Vos, S.; Wang, R.; Joziasse, C. A. P.; Wang, D. Favorable Formation of Stereocomplex Crystals in Poly(L-Lactide)/Poly(D-Lactide) Blends by Selective Nucleation. Polymer 2015, 76, 98–104. https://doi.org/10.1016/j.polymer.2015.08.056.Suche in Google Scholar
29. Song, Y.; Zhang, X.; Yin, Y.; de Vos, S.; Wang, R.; Joziasse, C. A.; LiuWang, G. D. Enhancement of Stereocomplex Formation in Poly(L-Lactide)/Poly(D-Lactide) Mixture by Shear. Polymer 2015, 72, 185–192. https://doi.org/10.1016/j.polymer.2015.07.023.Suche in Google Scholar
30. Fadda, H. M.; Hernández, M. C.; Margetson, D. N.; McAllister, S. M.; Basit, A. W.; BrocchiniSuárez, S.; Suárez, N. The Molecular Interactions that Influence the Plasticizer Dependent Dissolution of Acrylic Polymer Films. J. Pharm. Sci. 2008, 97 (9), 3957–3971. https://doi.org/10.1002/jps.21292.Suche in Google Scholar PubMed
31. Wu, W.; Tian, H.; Xiang, A. Influence of Polyol Plasticizers on the Properties of Polyvinyl Alcohol Films Fabricated by Melt Processing. J. Polym. Environ. 2012, 20, 63–69. https://doi.org/10.1007/s10924-011-0364-7.Suche in Google Scholar
32. Han, L.; Pan, P.; Shan, G.; Bao, Y. Stereocomplex Crystallization of High-Molecular-Weight Poly(L-Lactic Acid)/Poly(D-Lactic Acid) Racemic Blends Promoted by a Selective Nucleator. Polymer 2015, 63, 144–153. https://doi.org/10.1016/j.polymer.2015.02.053.Suche in Google Scholar
33. Przybytek, A.; Sienkiewicz, M.; Kucińska-Lipka, J.; Janik, H. Preparation and Characterization of Biodegradable and Compostable PLA/TPS/ESO Compositions. Ind. Crops Prod. 2018, 122, 375–383. https://doi.org/10.1016/j.indcrop.2018.06.016.Suche in Google Scholar
34. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Crystallization and Melting Behavior of Poly(L-Lactic Acid). Macromolecules 2007, 40 (26), 9463–9469. https://doi.org/10.1021/ma070082c.Suche in Google Scholar
35. Bao, R.-Y.; Yang, W.; Wei, X.-F.; Bang-hu, X. Enhanced Formation of Stereocomplex Crystallites of High Molecular Weight Poly(L-lactide)/Poly(D-lactide) Blends from Melt by Using Poly(Ethylene Glycol). ACS Sustainable Chem. Eng. 2014, 2 (10), 2301–2309. https://doi.org/10.1021/sc500464c.Suche in Google Scholar
36. Diao, X.; Chen, X.; Deng, S.; Bai, H. Substantially Enhanced Stereocomplex Crystallization of Poly(L-Lactide)/Poly(D-Lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers. Crystals 2022, 12 (2), 210. https://doi.org/10.3390/cryst12020210.Suche in Google Scholar
37. Zhu, J.; Na, B.; Lv, R.; Li, C. Enhanced Stereocomplex Formation of High-Molecular-Weight Polylactides by Gelation in an Ionic Liquid. Polym. Int. 2014, 63 (6), 1101–1104. https://doi.org/10.1002/pi.4620.Suche in Google Scholar
38. Marand, H.; Xu, J.; Srinivas, S. Determination of the Equilibrium Melting Temperature of Polymer Crystals: Linear and Nonlinear Hoffman− Weeks Extrapolations. Macromolecules 1998, 31 (23), 8219–8229. https://doi.org/10.1021/ma980747y.Suche in Google Scholar
39. Mahmoud, N. H. M.; Takagi, H.; Shimizu, N.; Igarashi, N.; Sakurai, S. Significantly High Melting Temperature of Homopolymer Crystals Obtained in a Poly(L-Lactic Acid)/Poly(D-Lactic Acid)(50/50) Blend. ACS omega 2023, 8 (43), 40482–40493. https://doi.org/10.1021/acsomega.3c05165.Suche in Google Scholar PubMed PubMed Central
40. Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y. Rheology and Crystallization of Long-Chain Branched Poly(L-Lactide) With Controlled Branch Length. Ind. Eng. Chem. Res. 2012, 51 (33), 10731–10741. https://doi.org/10.1021/ie300524j.Suche in Google Scholar
41. Dong, L.; Wang, C. M. Synthesis, Crystallization Kinetics, and Spherulitic Growth of Linear and Star-Shaped Poly(L-Lactide) With Different Numbers of Arms. J. Polym. Sci. A Polym. Chem. 2006, 44 (7), 2226–2236. https://doi.org/10.1002/pola.21330.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis