Home Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents
Article
Licensed
Unlicensed Requires Authentication

Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents

  • Shufeng Li EMAIL logo , Ruxin Gu , Ru Luo , Xinyao Cheng and Xuelin Li
Published/Copyright: May 29, 2024
Become an author with De Gruyter Brill

Abstract

Nanofibrous proton exchange membranes (PEMs) play an important role in improving the performance of the fuel cells. In this paper, two kinds of Nafion nanofibrous PEMs, Nafion-E/W and Nafion-DMF, were fabricated respectively by using ethanol/water (E/W) and N, N-dimethylformamide (DMF) as the solvent and their properties, such as the morphologies, water uptake, area swelling, ion exchange capabilities, conductivities, and mechanical properties were examined. Nafion-E/W nanofibers showed a thick diameter of 6,089 nm and Nafion-DMF nanofibers a thin diameter of 410 nm. Then the two Nafion nanofibers were annealed to provide the PEMs. Compared with Nafion 117 membranes and Nafion-DMF PEMs, Nafion-E/W PEMs showed the greatest water uptake and area swelling of respectively 59.75 % and 30.31 % and the conductivity increased to 0.1405 S/cm, more than twice as much as Nafion 117 membranes, but the broken stress decreased to 5.49 MPa, nearly half of Nafion 117 membranes. Nafion-DMF PEMs showed the lowest water uptake, area swelling, and conductivity of 22.67 %, 10.75 %, and 0.0410 S/cm, and the broken stress reached 14.20 MPa, greater than 11.0 MPa of Nafion 117 membranes. The obtained experimental results are instructive to improve the properties of Nafion PEMs.


Corresponding author: Shufeng Li, Key Laboratory of Advanced Textile Composites, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China, E-mail:

Funding source: the National Natural Science Fund of China

Award Identifier / Grant number: 51603144

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare that they have no conflicts of interest regarding this article.

  4. Research funding: The funding support by the National Natural Science Fund of China (grant no. 51603144) is greatly acknowledged.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Mohammad, B. K.; Fereidoon, M.; Khadijeh, H. Recent Approaches to Improve Nafion Performance for Fuel Cell Applications: a Review. Int. J. Hydrogen Energy 2019, 44, 28919–28938; https://doi.org/10.1016/j.ijhydene.2019.09.096.Search in Google Scholar

2. Je-Deok, K.; Akihiro, O. Water Electrolysis Using a Porous IrO2/Ti/IrO2 Catalyst Electrode and Nafion Membranes at Elevated Temperatures. Membranes-Basel 2021, 11, 330; https://doi.org/10.3390/membranes11050330.Search in Google Scholar PubMed PubMed Central

3. Sijabat, R. R.; Groot, M. T.; Moshtarikhah, S.; Schaaf, J. Maxwell-stefan Model of Multicomponent Ion Transport inside a Monolayer Nafion Membrane for Intensified Chlor-Alkali Electrolysis. J. Appl. Electrochem. 2019, 49, 353–368; https://doi.org/10.1007/s10800-018-01283-x.Search in Google Scholar

4. Shylendra, S. P.; Wajrak, M.; Alameh, K.; Kang, J. J. Nafion Modified Titanium Nitride pH Sensor for Future Biomedical Applications. Sensors 2023, 23, 699; https://doi.org/10.3390/s23020699.Search in Google Scholar PubMed PubMed Central

5. Manoj, K. K.; Ȍznur, D.; Christina, R. Polyacrylic Acid-Nafion Composites as Stable Catalyst Support in PEM Fuel Cell Electrodes. Mater. Today Commun. 2018, 16, 8–13; https://doi.org/10.1016/j.mtcomm.2018.02.003.Search in Google Scholar

6. Hsiu-Li, L.; T Leon, Y.; Cheng, H. H.; Tsang-Lang, L. Morphology Study of Nafion Membranes Prepared by Solutions Casting. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 3044–3057; https://doi.org/10.1002/polb.20599.Search in Google Scholar

7. Chia-Huang, M.; T Leon, Y.; Hsiu-Li, L.; Yu-Ting, H.; Yi-Ling, C.; U-Ser, J.; Ying-Huang, L.; Ya-Sen, S. Morphology and Properties of Nafion Membranes Prepared by Solution Casting. Polymer 2009, 50, 1764–1777; https://doi.org/10.1016/j.polymer.2009.01.060.Search in Google Scholar

8. Jonghyun, C.; Kyung, M. L.; Ryszard, W.; Peter, N. P.; Patrick, T. M. Nanofiber Network Ion-Exchange Membranes. Macromolecules 2008, 41, 4569–4572; https://doi.org/10.1021/ma800551w.Search in Google Scholar

9. Takuya, T.; Hiroyoshi, K. Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes. Nano Lett. 2010, 10, 1324–1328; https://doi.org/10.1021/nl1007079.Search in Google Scholar PubMed

10. Carbone, A.; Saccà, A.; Busacca, C.; Frontera, P.; Antonucci, P. L.; Passalacqua, E. Nafion® Electro-Spun Reinforced Membranes for Polymer Electrolyte Fuel Cell. J. Nanosci. Nanotechnol. 2011, 11, 8768–8774; https://doi.org/10.1166/jnn.2011.3451.Search in Google Scholar PubMed

11. Muhammad, S. M.; Miriam, K.; Dunia, A.; Maximilian, W.; Anja, K.; Simon, T.; Thomas, B.; Jochen, K. Electrospun Phosphonated Poly (Pentafluorostyrene) Nanofibers as a Reinforcement of Nafion Membranes for Fuel Cell Application. J. Membrane Sci. 2023, 685, 121915; https://doi.org/10.1016/j.memsci.2023.121915.Search in Google Scholar

12. Joshua, D. S.; Yossef, A. E. Nafion® Nanofibers and Their Effect on Polymer Electrolyte Membrane Fuel Cell Performance. J. Power Sources 2009, 186, 385–392; https://doi.org/10.1016/j.jpowsour.2008.10.039.Search in Google Scholar

13. Hong, C.; Joshua, D. S.; Yossef, A. E. Electrospinning and Solution Properties of Nafion and Poly(acrylic Acid). Macromolecules 2008, 41, 128–135; https://doi.org/10.1021/ma070893g.Search in Google Scholar

14. Tiandan, S.; Zhiyuan, C.; Hong, H.; Yuexing, L.; Yong, L.; Seeram, R. Orthogonal Design Study on Factors Affecting the Diameter of Perfluorinated Sulfonic Acid Nanofibers during Electrospinning. J. Appl. Polym. Sci. 2015, 132, 41755; https://doi.org/10.1002/app.41755.Search in Google Scholar

15. Ho, S. B.; Dongyoung, K.; Seung, S. H.; Jongok, W. Surface-modified Porous Membranes with Electrospun Nafion/PVA Fibers for Non-aqueous Redox Flow Battery. J. Membrane Sci. 2016, 514, 186–194.10.1016/j.memsci.2016.04.068Search in Google Scholar

16. Rumbidzai, E. Z.; Ahmet, Ç.; E Perrin, A. K.; C Ȍzgűr, Ç. Production of Poly(vinyl alcohol)/Nafion® Nanofibers and Their Stability Assessment for the Use in Direct Methanol Fuel Cells. J. Ind. Text. 2019, 50, 773–793; https://doi.org/10.1177/1528083719844611.Search in Google Scholar

17. Junhong, Z.; Anhou, X.; Wang, Z. Y.; Jianbing, G.; Junke, T.; Li, W.; Fei, A.; Yongming, Z. Evaluation of Electrospun Nanofiber Formation of Perfluorosulfonic Acid and Poly (N-Vinylpyrrolidone) through Solution Rheology. J. Mater. Sci. 2011, 46, 7501–7510; https://doi.org/10.1007/s10853-011-5721-3.Search in Google Scholar

18. Jun, W. P.; Ryszard, W.; Peter, N. P.; Venkata, Y.; Trung, V. N. Electrospun Nafion®/polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells. Materials 2016, 9, 143; https://doi.org/10.3390/ma9030143.Search in Google Scholar PubMed PubMed Central

19. Chanmin, L.; Seong, M. J.; Jonghyun, C.; Kyung-Youl, B.; Yen, B. T.; Ilias, L. K.; Yong-Gun, S. SiO2/sulfonated Poly Ether Ether Ketone (SPEEK) Composite Nanofiber Mat Supported Proton Exchange Membranes for Fuel Cells. J. Mater. Sci. 2013, 48, 3665–3671; https://doi.org/10.1007/s10853-013-7162-7.Search in Google Scholar

20. Miao, H.; Hong, Z.; Min, D.; Pan, G.; Bowen, L. Study on Sponge-Nafion Membranes Prepared by Electrospinning Method. Integr. Ferroelectr. 2015, 162, 55–61; https://doi.org/10.1080/10584587.2015.1037185.Search in Google Scholar

21. Sigwadi, R.; Dhlamini, M. S.; Mokrani, T.; Nemavhola, F. Structural Morphology and Electronic Conductivity of Blended Nafion®-Polyacrylonitrile/zirconium Phosphate Nanofibres. Int. J. Mech. Mater. Eng. 2019, 14, 1; https://doi.org/10.1186/s40712-019-0098-1.Search in Google Scholar

22. Jun, W. P.; Ryszard, W.; Guangyu, L.; Pau, Y. C.; Devon, P.; Trung, V. N.; Regis, P. D.; Peter, N. P. Electrospun Nafion/PVDF Single-Fiber Blended Membranes for Regenerative H2/Br2 Fuel Cells. J. Membrane Sci. 2017, 541, 85–92; https://doi.org/10.1016/j.memsci.2017.06.086.Search in Google Scholar

23. Keti, V.; Graeme, N.; Enrico, N.; Giovanni, C.; Jun, W. P.; Ryszard, W.; Peter, N. P.; Vito, D. N. Electric Response and Conductivity Mechanism of Blended Polyvinylidene fluoride/Nafion Electrospun Nanofibers. J. Am. Chem. Soc. 2020, 142, 801–814; https://doi.org/10.1021/jacs.9b09061.Search in Google Scholar PubMed

24. Nawn, G.; Vezzù, K.; Negro, E.; Pace, G.; Park, J. W.; Wycisk, R.; Cavinato, G.; Pintauro, P. N.; Di Noto, V. Structural Analyses of Blended Nafion/PVDF Electrospun Nanofibers. Phys. Chem. Chem. Phys. 2019, 21, 10357–10369; https://doi.org/10.1039/c9cp01891c.Search in Google Scholar PubMed

25. Bin, D.; Liang, G.; David, S. L. C.; Karen, I. W.; Yossef, A. E. Super Proton Conductive High-Purity Nafion Nanofibers. Nano Lett. 2010, 10, 3785–3790; https://doi.org/10.1021/nl102581w.Search in Google Scholar PubMed

26. Xueqi, Y.; Haijin, Z.; Fengjing, J.; Xinjie, Z. Notably Enhanced Proton Conductivity by Thermally-Induced Phase-Separation Transition of Nafion/poly(vinylidene Fluoride) Blend Membranes. J. Power Sources 2020, 473, 228586; https://doi.org/10.1016/j.jpowsour.2020.228586.Search in Google Scholar

Received: 2024-01-22
Accepted: 2024-05-06
Published Online: 2024-05-29
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0022/pdf
Scroll to top button