Abstract
In this work, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was modified by cellulose derivatives, and the effects of different kinds of cellulose derivatives on the crystallization and mechanical properties of PHBV were investigated. The crystallization and mechanical properties of PHBV/cellulose derivatives composites were measured by means of differential scanning calorimeter, polarizing microscope, and mechanical properties testing instruments. Studies show that cellulose acetate (CA) can promote the crystallization of PHBV, a small amount of CA can significantly increase the crystallization temperature of PHBV. The crystallization rate of PHBV was also accelerated by CA. However, the addition of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) decreased the crystallization temperature of PHBV and inhibited the nucleation of PHBV. And the degree of inhibition increased with the increase of CAB and CAP content. CAB and CAP have good compatibility with PHBV, CAB, and CAP can be uniformly dispersed in PHBV. Cellulose derivatives with specific component content can enhance the tensile properties of PHBV without losing the impact strength.
Acknowledgments
Jianxiang Chen wishes to acknowledge Professor Defeng Wu and Dr. Chenguang Jiang (Yangzhou University) for the help with testing.
-
Research ethics: Not applicable.
-
Author contributions: Jianxiang Chen: conceptualization, methodology, investigation, writing – original draft, writing – review & editing. Liqiang Deng: validation, writing – review & editing. Shentao Gong: formal analysis, investigation. Runmiao Yang: resources, writing – review & editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Patel, R.; Gómez-Cerezo, M. N.; Huang, H.; Grøndahl, L.; Lu, M. Y. Degradation Behaviour of Porous Poly(Hydroxybutyrate-Co-Hydroxyvalerate) (PHBV) Scaffolds in Cell Culture. Int. J. Biol. Macromol. 2024, 257 (1–9), 128644; https://doi.org/10.1016/j.ijbiomac.2023.128644.Search in Google Scholar PubMed
2. Dalgic, A. D.; Koman, E.; Karatas, A.; Tezcaner, A.; Keskin, D. Natural Origin Bilayer Pullulan-PHBV Scaffold for Wound Healing Applications. Biomater. Adv. 2022, 134 (1–11), 112554; https://doi.org/10.1016/j.msec.2021.112554.Search in Google Scholar PubMed
3. Weng, K.; Li, F.; Takayama, Y.; Nishijo, M.; Tanaka, T. Effects of Soaking Solvents by an Isothermal Crystallization Process on Physical Properties and Structures in One-Step-Drawing Films of Biodegradable P(3HB) Copolymers. Macromolecules 2023, 56, 8721–8734; https://doi.org/10.1021/acs.macromol.3c01224.Search in Google Scholar
4. Tarrahi, R.; Fathi, Z.; Seydibeyoğlu, M. Ö.; Doustkhah, E.; Khataee, A. Polyhydroxyalkanoates (PHA): From Production to Nanoarchitecture. Int. J. Biol. Macromol. 2020, 146, 596–619; https://doi.org/10.1016/j.ijbiomac.2019.12.181.Search in Google Scholar PubMed
5. Ou, Y. R.; Yin, J.; Xiao, M.; Cui, H.; Huang, K. S.; Li, Y.; Ke, Y. Preparation of Antibacterial PHBV/GO Nanocomposite Membranes via Electrospinning. Mater. Today Commun. 2023, 35 (1–9), 106370; https://doi.org/10.1016/j.mtcomm.2023.106370.Search in Google Scholar
6. Yang, H. L.; Xu, G. H.; Li, J. T.; Wang, L. Y.; Yu, K. S.; Yan, J. D.; Zhang, S.; Zhou, H. F. Fabrication of Bio-Based Biodegradable Poly(Lactic Acid) (PLA) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV) Composite Foams for Highly Efficient Oil-Water Separation. Int. J. Biol. Macromol. 2024, 257 (1–14), 128750; https://doi.org/10.1016/j.ijbiomac.2023.128750.Search in Google Scholar PubMed
7. Oyama, I. M. C.; Anjos, E. G. R.; Morgado, G. F. M.; Martins, E. F.; Passador, F. R. Antistatic and Antimicrobial Packaging of PLA/PHBV Blend-Based Graphene Nanoplatelets Nanocomposites. J. Appl. Polym. Sci. 2023, 140 (1–17), e54484.10.1002/app.54484Search in Google Scholar
8. Jin, A. Y.; Valle, L. J.; Puiggalí, J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int. J. Mol. Sci. 2023, 24 (1–26), 17250; https://doi.org/10.3390/ijms242417250.Search in Google Scholar PubMed PubMed Central
9. Tubio, C. R.; Valle, X.; Carvalho, E.; Moreira, J.; Costa, P.; Correia, D. M.; Lanceros-Mendez, S. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blends with Poly(caprolactone) and Poly(lactic Acid): A Comparative Study. Polymers 2023, 15 (1–14), 4566; https://doi.org/10.3390/polym15234566.Search in Google Scholar PubMed PubMed Central
10. Ashori, A.; Jonoobi, M.; Ayrilmis, N.; Shahreki, A.; Fashapoyeh, M. A. Preparation and Characterization of Polyhydroxybutyrate-Co-Valerate (PHBV) as Green Composites Using Nano Reinforcements. Int. J. Biol. Macromol. 2019, 136, 1119–1124; https://doi.org/10.1016/j.ijbiomac.2019.06.181.Search in Google Scholar PubMed
11. Pracella, M.; Mura, C.; Galli, G. Polyhydroxyalkanoate Nanocomposites with Cellulose Nanocrystals as Biodegradable Coating and Packaging Materials. ACS Appl. Nano Mater. 2021, 4, 260–270; https://doi.org/10.1021/acsanm.0c02585.Search in Google Scholar
12. Chen, J. X.; Yang, R. M.; Ou, J. F.; Tang, C.; Xiang, M.; Wu, D. F.; Tang, J. T.; Tam, K. C. Functionalized Cellulose Nanocrystals as the Performance Regulators of Poly(β-Hydroxybutyrate-Co-Valerate) Biocomposites. Carbohyd. Polym. 2020, 242, 116399; https://doi.org/10.1016/j.carbpol.2020.116399.Search in Google Scholar PubMed
13. Zheng, T.; Clemons, C. M.; Pilla, S. Comparative Study of Direct Compounding, Coupling Agent-Aided and Initiator-Aided Reactive Extrusion to Prepare Cellulose Nanocrystal/PHBV (CNC/PHBV) Nanocomposite. ACS Sustainable Chem. Eng. 2020, 8, 814–822; https://doi.org/10.1021/acssuschemeng.9b04867.Search in Google Scholar
14. Braga, N. F.; Vital, D. A.; Guerrini, L. M.; Lemes, A. P.; Formaggio, D. M. D.; Tada, D. B.; Arantes, T. M.; Cristovan, F. H. PHBV-TiO2 Mats Prepared by Electrospinning Technique: Physico-Chemical Properties and Cytocompatibility. Biopolymers 2018, 109 (1–12), e23120; https://doi.org/10.1002/bip.23120.Search in Google Scholar PubMed
15. Chen, J. X.; Huang, Y. Y.; Deng, L. Q.; Jiang, H. P.; Yang, Z.; Yang, R. M.; Wu, D. F. Preparation and Research of PCL/Cellulose Composites: Cellulose Derived from Agricultural Wastes. Int. J. Biol. Macromol. 2023, 235, 123785–123793; https://doi.org/10.1016/j.ijbiomac.2023.123785.Search in Google Scholar PubMed
16. Chen, J. X.; Wang, Y. K.; Yin, Z. R.; Tam, K. C.; Wu, D. F. Morphology and Mechanical Properties of Poly(β-Hydroxybutyrate)/Poly(ε-Caprolactone) Blends Controlled with Cellulose Particles. Carbohyd. Polym. 2017, 174, 217–225; https://doi.org/10.1016/j.carbpol.2017.06.053.Search in Google Scholar PubMed
17. Chen, J. X.; Wu, D. F.; Tam, K. C.; Pan, K. R.; Zheng, Z. G. Effect of Surface Modification of Cellulose Nanocrystal on Nonisothermal Crystallization of Poly(β-Hydroxybutyrate) Composites. Carbohyd. Polym. 2017, 157, 1821–1829; https://doi.org/10.1016/j.carbpol.2016.11.071.Search in Google Scholar PubMed
18. Zhao, X. Y.; Anwar, I.; Zhang, X.; Pellicciotti, A.; Storts, S.; Nagib, D. A.; Vodovotz, Y. Thermal and Barrier Characterizations of Cellulose Esters with Variable Side-Chain Lengths and Their Effect on PHBV and PLA Bioplastic Film Properties. ACS Omega 2021, 6, 24700–24708; https://doi.org/10.1021/acsomega.1c03446.Search in Google Scholar PubMed PubMed Central
19. Zhou, Y. H.; Katsou, E.; Fan, M. Z. Interfacial Structure and Property of Eco-Friendly Carboxymethylcellulose/Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Biocomposites. Int. J. Biol. Macromol. 2021, 179, 550–556; https://doi.org/10.1016/j.ijbiomac.2021.03.009.Search in Google Scholar PubMed
20. Chen, J. X.; Wu, D. F.; Pan, K. R. Effects of Ethyl Cellulose on the Crystallization and Mechanical Properties of Poly(β-Hydroxybutyrate). Int. J. Biol. Macromol. 2016, 88, 120–129; https://doi.org/10.1016/j.ijbiomac.2016.03.048.Search in Google Scholar PubMed
21. Lecoublet, M.; Ragoubi, M.; Leblanc, N.; Koubaa, A. Dielectric and Rheological Performances of Cellulose Acetate, Polylactic Acid and Polyhydroxybutyrate-Co-Valerate Biobased Blends. Polymer 2023, 285 (1–8), 126358; https://doi.org/10.1016/j.polymer.2023.126358.Search in Google Scholar
22. Meereboer, K. W.; Pal, A. K.; Misra, M.; Mohanty, A. K. Sustainable PHBV/Cellulose Acetate Blends: Effect of a Chain Extender and a Plasticizer. ACS Omega 2020, 5, 14221–14231; https://doi.org/10.1021/acsomega.9b03369.Search in Google Scholar PubMed PubMed Central
23. Gilmore, D. F.; Fuller, R. C.; Schneider, B.; Lenz, R. W.; Lotti, N.; Scandola, M. Biodegradability of Blends of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) with Cellulose Acetate Esters in Activated Sludge. J. Environ. Polym. Degr. 1994, 2, 49–57; https://doi.org/10.1007/bf02073486.Search in Google Scholar
24. Gardner, R. M.; Buchanan, C. M.; Komarek, R.; Dorschel, D.; Boggs, C.; White, A. W. Compostability of Cellulose Acetate Films. J. Appl. Polym. Sci. 1994, 52, 1477–1488; https://doi.org/10.1002/app.1994.070521012.Search in Google Scholar
25. Vatanpour, V.; Pasaoglu, M. E.; Barzegar, H.; Teber, O. O.; Kaya, R.; Bastug, M.; Khataee, A.; Koyuncu, I. Cellulose Acetate in Fabrication of Polymeric Membranes: A Review. Chemosphere 2022, 295 (1–21), 133914; https://doi.org/10.1016/j.chemosphere.2022.133914.Search in Google Scholar PubMed
26. Liao, Q.; Tsui, A.; Billington, S.; Frank, C. W. Extruded Foams from Microbial Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) and its Blends with Cellulose Acetate Butyrate. Polym. Eng. Sci. 2012, 52, 1495–1508; https://doi.org/10.1002/pen.23087.Search in Google Scholar
27. Buchanan, C. M.; Gedon, S. C.; White, A. W.; Wood, M. D. Cellulose Acetate Butyrate and Poly(hydroxybutyrate-Co-Valerate) Copolymer Blends. Macromolecules 1992, 25, 7373–7381; https://doi.org/10.1021/ma00052a046.Search in Google Scholar
28. Ali, S. F. A.; William, L. A.; Fadl, E. A. Cellulose Acetate, Cellulose Acetate Propionate and Cellulose Acetate Butyrate Membranes for Water Desalination Applications. Cellulose 2020, 27, 9525–9543; https://doi.org/10.1007/s10570-020-03434-w.Search in Google Scholar
29. Dou, J. Z.; Karakoc, A.; Johansson, L. S.; Hietala, S.; Evtyugin, D.; Vuorinen, T. Mild Alkaline Separation of Fiber Bundles from Eucalyptus Bark and Their Composites with Cellulose Acetate Butyrate. Ind. Crop. Prod. 2023, 202, 116980.Search in Google Scholar
30. Park, Y.; Banerjee, D.; Jin, S. A.; Li, S. S.; Beck, S.; Purser, L.; Ford, E. Organophosphate-Cyclodextrin Inclusion Complex for Flame Retardancy in Doped Cellulose Acetate Butyrate Melt-Spun Fibers. Ind. Eng. Chem. Res. 2023, 62, 11595–11605; https://doi.org/10.1021/acs.iecr.3c00712.Search in Google Scholar
31. Wen, Y. H.; Zhang, H. Y.; Li, J.; An, S.; Chen, W.; Song, Y. F. Core-shell Assembly of Heteropolyacids and Polymer: Efficient Preparation of Cellulose Acetate Propionate and its Processed Products. ACS Sustainable Chem. Eng. 2021, 9, 5179–5186; https://doi.org/10.1021/acssuschemeng.1c00349.Search in Google Scholar
32. Gao, C.; Li, X. P.; Song, C. Y.; Wei, G. J.; Zhao, X. X.; Wang, S. J.; Kong, F. G. Electrospun Polyimide/cellulose Acetate Propionate Nanofiber Membrane-Based Gel Polymer Electrolyte with Fast Lithium-Ion Transport and High Interface Stability for Lithium Metal Batteries. Cellulose 2023, 30, 9113–9126; https://doi.org/10.1007/s10570-023-05434-y.Search in Google Scholar
33. Gao, C.; Li, X. P.; Wei, G. J.; Wang, S. J.; Zhao, X. X.; Kong, F. G. In-situ Construction of Cellulose Acetate Propionate-Based Hybrid Gel Polymer Electrolyte for High-Performance Lithium Metal Batteries. Ind. Crop. Prod. 2023, 204 (1–7), 117395; https://doi.org/10.1016/j.indcrop.2023.117395.Search in Google Scholar
34. Lee, J. E.; Shim, S. B.; Park, J. H.; Chung, I. Interfacial Properties and Melt Processability of Cellulose Acetate Propionate Composites by Melt Blending of Biofillers. Polymers 2022, 14 (1–15), 4286; https://doi.org/10.3390/polym14204286.Search in Google Scholar PubMed PubMed Central
35. Lotti, N.; Scandola, M. Miscibility of Bacterial Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) with Ester Substituted Celluloses. Polym. Bull. 1992, 29, 407–413; https://doi.org/10.1007/bf00944838.Search in Google Scholar
36. Zhao, X. Y.; Liu, Y.; Shuai, Z.; Wang, C. Y. Preparation and Performance of Three-Layered Structure Composite Membrane for Heavy Metal Ions and Hazardous Dyes Rejection. Polym. Eng. Sci. 2019, 59, E322–E329; https://doi.org/10.1002/pen.24965.Search in Google Scholar
37. Parasnis, N. C.; Ramani, K. Non-Isothermal Crystallization of UHMWPE. J. Therm. Anal. Calorim. 1999, 55, 709–719; https://doi.org/10.1023/a:1010139110366.10.1023/A:1010139110366Search in Google Scholar
38. Mubarak, Y.; Harkin-Jones, E. M. A.; Martin, P. J.; Ahmad, M. Modeling of Non-isothermal Crystallization Kinetics of Isotactic Polypropylene. Polymer 2001, 42, 3171–3182; https://doi.org/10.1016/s0032-3861(00)00606-6.Search in Google Scholar
39. Kamal, M. R.; Chu, E. Isothermal and Nonisothermal Crystallization of Polyethylene. Polym. Eng. Sci. 1983, 23, 27–31; https://doi.org/10.1002/pen.760230107.Search in Google Scholar
40. Liu, T. X.; Mo, Z. S. Nonisothermal Melt and Cold Crystallization Kinetics of Poly(Arylether Ketone). Polym. Eng. Sci. 1997, 37, 568–571.10.1002/pen.11700Search in Google Scholar
41. Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706; https://doi.org/10.1021/ac60131a045.Search in Google Scholar
42. Woo, E. M.; Wu, P. L. Effects of Miscible Diluent of Poly(Ether Imide) on Ring-Banded Morphology of Poly(Trimethylene Terephthalate). Colloid Polym. Sci. 2006, 284, 357–365; https://doi.org/10.1007/s00396-005-1387-1.Search in Google Scholar
43. Hsieh, Y. T.; Ishige, R.; Higaki, Y. J.; Woo, E. M.; Takahara, A. Microscopy and Microbeam X-ray Analyses in Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) with Amorphous Poly(Vinyl Acetate). Polymer 2014, 55, 6906–6914; https://doi.org/10.1016/j.polymer.2014.10.058.Search in Google Scholar
44. Chen, Y. F.; Woo, E. M. Growth Regimes and Spherulites in Thin-Film Poly(ɛ-Caprolactone) with Amorphous Polymers. Colloid Polym. Sci. 2008, 286, 917–926; https://doi.org/10.1007/s00396-008-1848-4.Search in Google Scholar
45. Chang, L.; Chou, Y. H.; Woo, E. M. Effects of Amorphous Poly(Vinyl Acetate) on Crystalline Morphology of Poly(3-Hydroxybutyric acid-Co-3-Hydroxyvaleric Acid). Colloid Polym. Sci. 2011, 289, 199–211; https://doi.org/10.1007/s00396-010-2330-7.Search in Google Scholar
46. Gandica, A.; Magill, J. H. A Universal Relationship for the Crystallization Kinetics of Polymeric Materials. Polymer 1972, 13, 595–596; https://doi.org/10.1016/0032-3861(72)90124-3.Search in Google Scholar
47. Wang, W. T.; Tang, M.; Wang, X. H.; Xu, C.; Wang, Z. G. Making a Rapid Completion of Crystallization for Bisphenol a Polycarbonate by a Double-Layer Film Method. Ind. Eng. Chem. Res. 2018, 57, 6797–6803; https://doi.org/10.1021/acs.iecr.8b01295.Search in Google Scholar
48. Umemoto, S.; Okui, N. Master Curve of Crystal Growth Rate and its Corresponding State in Polymeric Materials. Polymer 2002, 43, 1423–1427; https://doi.org/10.1016/s0032-3861(01)00707-8.Search in Google Scholar
49. Chen, J. X.; Xu, C. J.; Wu, D. F.; Pan, K. R.; Qian, A. W.; Sha, Y. L.; Wang, L.; Tong, W. Insights into the Nucleation Role of Cellulose Crystals during Crystallization of Poly(β-Hydroxybutyrate). Carbohyd. Polym. 2015, 134, 508–515; https://doi.org/10.1016/j.carbpol.2015.08.023.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0035).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances
- Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents
- Impact of proximity of hard and soft segment on IR frequency of carbamate links correlating the mechanical properties of surface-functionalized fly ash–reinforced polyurethane composites
- Effect of cellulose derivatives on crystallization and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- Preparation and Assembly
- Transparent poly(methyl methacrylate-butyl acrylate-hexafluorobutyl methacrylate) for conservation of stone relics: synthesis and test
- Dry porous polydimethylsiloxane (PDMS): a novel method using camphor as scaffold
- Engineering and Processing
- Mixing performance in an asymmetrical non-twin kneading element channel
- Utilizing ResNet for enhanced quality prediction in PET production: an AI-driven approach
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances
- Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents
- Impact of proximity of hard and soft segment on IR frequency of carbamate links correlating the mechanical properties of surface-functionalized fly ash–reinforced polyurethane composites
- Effect of cellulose derivatives on crystallization and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- Preparation and Assembly
- Transparent poly(methyl methacrylate-butyl acrylate-hexafluorobutyl methacrylate) for conservation of stone relics: synthesis and test
- Dry porous polydimethylsiloxane (PDMS): a novel method using camphor as scaffold
- Engineering and Processing
- Mixing performance in an asymmetrical non-twin kneading element channel
- Utilizing ResNet for enhanced quality prediction in PET production: an AI-driven approach