Home Dry porous polydimethylsiloxane (PDMS): a novel method using camphor as scaffold
Article
Licensed
Unlicensed Requires Authentication

Dry porous polydimethylsiloxane (PDMS): a novel method using camphor as scaffold

  • Sulagna Chatterjee ORCID logo EMAIL logo and Liana Chatterjee
Published/Copyright: June 28, 2024
Become an author with De Gruyter Brill

Abstract

An optimal portable microfluidic device should ensure least number of accessories for versatile field application. Typically, in such a device fabricated with polydimethylsiloxane (PDMS), the transport of fluid is enabled through a nonconventional pumping mechanism. This pumping system has been demonstrated to utilize the relatively high air permeability of polydimethyl siloxane (PDMS) to transport small volume fluid. In the recent past, microporous PDMS has replaced PDMS in this capacity. Microporous PDMS is typically fabricated through a series of steps where a sacrificial template is used to infiltrate the polymer. This template is removed after the polymer undergoes curing. This method has consistently produced a spongy structure that is nonrigid, sticky, and moist rendering it unwieldy. In this work, we present a novel concept of using camphor (Cinnamomum camphora) as a template to fabricate a dry polymeric sponge. The proposed sponge is molded on a sublimable material, camphor to avoid the additional step of template dissolution. The sponge is demonstrated to be stiff yet flexible rendering it convenient to be compacted into a confined space. Additionally, the sponge is dry and nonsticky as compared to structures that have been generated through sugar leaching.


Corresponding author: Sulagna Chatterjee, Department of Chemical Engineering, Heritage Institute of Technology, Kolkata 700 107, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This research has been jointly funded by Heritage Institute of Technology, Kolkata, India, and Indian Institute of Chemical Engineers (IIChE), Kolkata Chapter. The authors are indebted for the support provided.

  5. Data availability: Not applicable.

References

1. Merkel, T.; Bondar, V.; Nagai, K.; Freeman, B.; Pinnau, I. J. Polym. Sci. B. Polym. Phys. 2000, 38, 415; https://doi.org/10.1002/(sici)1099-0488(20000201)38:3<415::aid-polb8>3.0.co;2-z.10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-ZSearch in Google Scholar

2. Choi, S.; Kwon, T.; Im, H.; Moon, D.; Baek, D.; Seol, M.; Duarte, J.; Choi, Y. ACS Appl. Mater. Interfaces 2011, 3, 4552; https://doi.org/10.1021/am201352w.Search in Google Scholar

3. Yu, C., Yu, C., Cui, L., Song, Z., Zhao, X., Ma, Y., Jiang, L. Adv. Mater. Interfaces 2017, 4(1600862), 1–5; https://doi.org/10.1002/admi.201600862.Search in Google Scholar

4. Zhang, S.; Guo, J.; Ma, X.; Peng, X.; Qiu, Z.; Ying, J.; Wang, J. New J. Chem. 2017, 41, 8940; https://doi.org/10.1039/c7nj01067b.Search in Google Scholar

5. Shin, J.; Heo, J.; Jeon, S.; Park, J.; Kim, S.; Kang, H. J. Hazard. Mater. 2019, 365, 494; https://doi.org/10.1016/j.jhazmat.2018.10.078.Search in Google Scholar

6. Liang, S., Li, Y., Yang, J., Zhang, J., He, C., Liu, Y., Zhou, X. Adv. Mater Technol. 2016, 1(1600117), https://doi.org/10.1002/admt.201670034.Search in Google Scholar

7. Song, Y., Chen, H., Su, Z., Chen, X., Miao, L., Zhang, J., Cheng, X., Zhang, H. Small 2017, 13, 1702091; https://doi.org/10.1002/smll.201702091.Search in Google Scholar

8. Wu, S.; Zhang, J.; Ladani, R.; Ravindran, A.; Mouritz, A.; Kinloch, A.; Wang, C. ACS Appl. Mater. Interfaces 2017, 9, 14207; https://doi.org/10.1021/acsami.7b00847.Search in Google Scholar

9. Jung, Y., Jung, K., Park, B., Choi, J., Kim, D., Park, J., Ko, J., Cho, H. Micro Nano Syst. Lett. 2019, 7(20), 4–9; https://doi.org/10.1186/s40486-019-0097-2.Search in Google Scholar

10. Sengupta, D.; Pei, Y.; Kottapalli, A. ACS Appl. Mater. Interfaces 2019, 11, 35201; https://doi.org/10.1021/acsami.9b11776.Search in Google Scholar

11. Gong, X., Yang, Q., Zhi, C., Lee, P. Adv. Energy Mater. 2021, 11(200308), 1–30; https://doi.org/10.1002/aenm.202003308.Search in Google Scholar

12. Bilent, S., Martincic, E., Joubert, P., IEEE Electronics Packaging Society and Institute of Electrical and Electronics Engineers. 2020 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP); IEEE Explore: New Jersey, US, 2020.Search in Google Scholar

13. Li, X.; Tanyan, S.; Xie, S.; Chen, R.; Liao, Q.; Zhu, X.; He, X. Sep. Purif. Technol. 2022, 292, 120985; https://doi.org/10.1016/j.seppur.2022.120985.Search in Google Scholar

14. Cha, K.; Kim, D. Biomed. Microdevices 2011, 13, 877; https://doi.org/10.1007/s10544-011-9557-z.Search in Google Scholar PubMed

15. Zhou, T., Yang, J., Zhu, D., Zheng, J., Wang, S., Zhou, X., Zhang, J., Liu, Y., Liu, Z., He, C., Zhou, X. Adv. Sci. 2017, 4(1700028), 1–6; https://doi.org/10.1002/advs.201700028.Search in Google Scholar PubMed PubMed Central

16. Thurgood, P.; Baratchi, S.; Szydzik, C.; Mitchell, A.; Khoshmanesh, K. Lab Chip 2017, 17, 2517; https://doi.org/10.1039/c7lc00350a.Search in Google Scholar PubMed

17. Li, Q.; Duan, T.; Shao, J.; Yu, H. J. Mater. Sci. 2018, 53, 11873; https://doi.org/10.1007/s10853-018-2396-z.Search in Google Scholar

18. Ren, X.; Lu, H.; Zhou, J.; Chong, P.; Yuan, W.; Noh, M. J. Microelectromech. Syst. 2017, 26, 120; https://doi.org/10.1109/jmems.2016.2618395.Search in Google Scholar

19. Hosseini, E.; Chakraborty, M.; Roe, J.; Petillot, Y.; Dahiya, R. IEEE Sens. J. 2022, 22, 9914; https://doi.org/10.1109/jsen.2022.3165560.Search in Google Scholar

20. Turco, A.; Primiceri, E.; Frigione, M.; Maruccio, G.; Malitesta, C. J. Mater. Chem. A 2017, 5, 23785; https://doi.org/10.1039/c7ta06840a.Search in Google Scholar

21. Zhang, L.; Zhang, Y.; Chen, P.; Du, W.; Feng, X.; Liu, B. Langmuir 2019, 35, 11123; https://doi.org/10.1021/acs.langmuir.9b01861.Search in Google Scholar PubMed

22. Keller, A.; Zainulabdeen, K.; Warren, H.; Panhuis, M. MRS Adv. 2022, 7, 495; https://doi.org/10.1557/s43580-021-00196-w.Search in Google Scholar

23. Löffler, R., Hanczyc, M., Gorecki, J. Sci. Rep. 2022, 12(243), https://doi.org/10.1038/s41598-021-04240-5.Search in Google Scholar PubMed PubMed Central

24. Choudhury, S.; Dutta, S.; Chatterjee, S. Micro Nano Lett. 2019, 14, 860; https://doi.org/10.1049/mnl.2018.5411.Search in Google Scholar

25. Dow Corning. Technical Data Sheet. In SYLGARD® 184 Silicone Elastomer-Product Information; The Dow Chemical Company: Torrance, 2017; pp. 1–5.Search in Google Scholar

26. Phaechamud, T.; Tuntarawongsa, S.; Charoensuksai, P. AAPS Pharm. Sci. Tech. 2016, 17, 1213; https://doi.org/10.1208/s12249-015-0459-x.Search in Google Scholar PubMed

27. Williams, D.; Kuhn, A.; Amann, M.; Hausingera, M.; Konarika, M.; Nesselrode, E. Galvanotechnik 2010, 101, 2502.Search in Google Scholar

28. Law, K. J. Phys. Chem. Lett. 2014, 5, 686; https://doi.org/10.1021/jz402762h.Search in Google Scholar PubMed

29. Grove, C.; Jerram, D. Comput. Geosci. 2011, 37, 1850; https://doi.org/10.1016/j.cageo.2011.03.002.Search in Google Scholar

Received: 2024-05-18
Accepted: 2024-06-03
Published Online: 2024-06-28
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0097/html
Scroll to top button