Home Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
Article
Licensed
Unlicensed Requires Authentication

Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM

  • Caifeng Chen ORCID logo , Wuwen Zhong , Junhao Guo , Kai Liu and Andong Wang ORCID logo EMAIL logo
Published/Copyright: October 17, 2023
Become an author with De Gruyter Brill

Abstract

Acrylonitrile-butadiene-styrene (ABS) resin is a widely used engineering plastic at present. Due to its excellent mechanical properties and high fluidity, it is utilized in fused deposition molding (FDM) technology. In this paper, boron nitride nanosheets (BNNS) were prepared by hydrothermal exfoliation and used as nano-fillers for ABS resin, and ABS/BNNS composite wires for FDM printing were prepared by melt blending method. The results showed that BNNS with fewer layers were obtained; the addition of BNNS to the ABS resin matrix could effectively enhance the thermal conductivity of the composites. When the addition amount of BNNS was 15 wt%, the thermal conductivity of the composite increased to 0.369 W/(m K), which was 120.06 % higher than that of pure ABS (0.174 W/(m K)). In addition, BNNS also improves the mechanical properties, thermal stability, and melt flow rate of the composites, thus making ABS composite wires more suitable for FDM printing.


Corresponding author: Andong Wang, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: No. 52175464

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Writing Original Draft, Caifeng Chen; Data Curation, Wuwen Zhong; Resources, Junhao Guo and Kai Liu; Project Administration and Supervision, Andong Wang.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (no. 52175464).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Sankaravel, S. G., Syed, R. B., Manivachakan, V. In vitro and mechanical characterization of PLA/egg shell biocomposite scaffold manufactured using fused deposition modeling technology for tissue engineering applications. Polym. Compos. 2022, 43, 173–186, https://doi.org/10.1002/pc.26365.Search in Google Scholar

2. Sabee, M. M. S. M., Tajuddin, N. N. I. A., Ishak, K. M. K., Rusli, A., Abdullah, M. K., Shafiq, M. D., Shuib, R. K., Hamid, Z. A. A. Comparison of physical and mechanical properties of biodegradable polybutylene adipate terephthalate, polycaprolactone, and poly(lactic acid) fabricated via fused deposition modeling and conventional molding. J. Appl. Polym. Sci. 2022, 139, 1–12.10.1002/app.52973Search in Google Scholar

3. Cano, V. A., Tambuwala, M. M., Hassan, S. S., Barh, D., Aljabali, A. A. A., Birkett, M., Arjunan, A., Serrano, A. Á. Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378, https://doi.org/10.1016/j.addma.2021.102378.Search in Google Scholar

4. Bahnini, I., Rivette, M., Rechia, A., Siadat, A., Elmesbahi, A. Additive manufacturing technology: the status, applications, and prospects. Int. J. Adv. Manuf. Technol. 2018, 97, 147–161, https://doi.org/10.1007/s00170-018-1932-y.Search in Google Scholar

5. Aloqalaa, Z. Electrically conductive fused deposition modeling filaments: current status and medical applications. Crystals 2022, 12, 1055, https://doi.org/10.3390/cryst12081055.Search in Google Scholar

6. Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., Fino, P. Overview on additive manufacturing technologies. Proc. IEEE 2017, 105, 593–612, https://doi.org/10.1109/jproc.2016.2625098.Search in Google Scholar

7. Chen, H., Zhuo, F., Zhou, J., Liu, Y., Zhang, J. B., Dong, S. R., Liu, X. Q., Elmarakbi, A., Duan, H. G., Fu, Y. Q. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576, https://doi.org/10.1016/j.cej.2023.142576.Search in Google Scholar

8. Roudný, P., Syrový, T. Thermal conductive composites for FDM 3D printing: a review, opportunities and obstacles, future directions. J. Manuf. Process. 2022, 83, 667–677, https://doi.org/10.1016/j.jmapro.2022.09.026.Search in Google Scholar

9. Osman, A., Lu, J. 3D printing of polymer composites to fabricate wearable sensors: a comprehensive review. Mater. Sci. Eng., R 2023, 154, 100734, https://doi.org/10.1016/j.mser.2023.100734.Search in Google Scholar

10. Camargo, J. C., Machado, Á. R., Almeida, E. C., Silva, E. F. M. S. Mechanical properties of PLA-graphene filament for FDM 3D printing. Int. J. Adv. Manuf. Technol. 2019, 103, 2423–2443, https://doi.org/10.1007/s00170-019-03532-5.Search in Google Scholar

11. Spinelli, G., Lamberti, P., Tucci, V., Kotsilkova, R., Ivanov, E., Menseidov, D., Naddeo, C., Romano, V., Guadagno, L., Adami, R., Meisak, D., Bychanok, D., Kuzhir, P. Nanocarbon/poly(lactic) acid for 3D printing: effect of fillers content on electromagnetic and thermal properties. Materials 2019, 12, 2369, https://doi.org/10.3390/ma12152369.Search in Google Scholar PubMed PubMed Central

12. Santos, F. A., Rebelo, H., Coutinho, M., Sutherland, L. S., Cismasiu, C., Farina, I., Fraternali, F. Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA versus PETg. Compos. Struct. 2021, 256, 113128, https://doi.org/10.1016/j.compstruct.2020.113128.Search in Google Scholar

13. Farina, I., Singh, N., Colangelo, F., Luciano, R., Bonazzi, G., Fraternali, F. High-performance nylon-6 sustainable filaments for additive manufacturing. Materials 2019, 12, 3955, https://doi.org/10.3390/ma12233955.Search in Google Scholar PubMed PubMed Central

14. Guadagno, L., Aliberti, F., Longo, R., Raimondo, M., Pantani, R., Sorrentino, A., Catauro, M., Vertuccio, L. Electrical anisotropy controlled heating of acrylonitrile butadiene styrene 3D printed parts. Mater. Des. 2023, 225, 111507, https://doi.org/10.1016/j.matdes.2022.111507.Search in Google Scholar

15. Hamzah, K. A., Yeoh, C. K., Noor, M. M., Teh, P. L., Aw, Y. Y., Sazali, S., Ibrahim, W. M. A. W. Mechanical properties and thermal and electrical conductivity of 3D printed ABS-copper ferrite composites via 3D printing technique. J. Thermoplast. Compos. Mater. 2022, 35, 3–16, https://doi.org/10.1177/0892705719869405.Search in Google Scholar

16. Waheed, S., Cabot, J. M., Smejkal, P., Farajikhah, S., Sayyar, S., Innis, P. C., Beirne, S., Barnsley, G., Lewis, T. W., Breadmore, M. C., Paull, B. Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer. ACS Appl. Mater. Interfaces 2019, 11, 4353–4363, https://doi.org/10.1021/acsami.8b18232.Search in Google Scholar PubMed

17. Shemelya, C., Rosa, A. D. L., Torrado, A. R., Yu, K., Domanowski, J., Bonacuse, P. J., Martin, R. E., Juhasz, M., Hurwitz, F., Wicker, R. B., Conner, B., MacDonald, E., Roberson, D. A. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit. Manuf. 2017, 16, 186–196, https://doi.org/10.1016/j.addma.2017.05.012.Search in Google Scholar

18. Chen, C., Shao, C., Wang, A. Chemical exfoliating of boron nitride into edge-hydroxylated nanosheets. J. Mater. Sci. 2023, 58, 4416–4427, https://doi.org/10.1007/s10853-023-08316-7.Search in Google Scholar

19. Chen, C., Shao, M., Liu, K., Zhong, W., Djassi, I., Wang, A. Enhanced thermal and electrical properties of photosensitive resin matrix composites with hexagonal boron nitride nanosheets. J. Inorg. Organomet. Polym. Mater. 2023, 33, 319–327, https://doi.org/10.1007/s10904-022-02500-z.Search in Google Scholar

20. Xu, Q. C., Li, X. X., Chen, Z. X., Li, L., Li, Z. W. Highly thermally conductive polymer-based composites with 3D exfoliated BNNS/functionalized SiC networks prepared by rapid solidification and hot pressing. React. Funct. Polym. 2023, 186, 105539, https://doi.org/10.1016/j.reactfunctpolym.2023.105539.Search in Google Scholar

21. Liu, Z., Li, J. H., Zhou, C., Zhu, W. H. A molecular dynamics study on thermal and rheological properties of BNNS-epoxy nanocomposites. Int. J. Heat Mass Transfer 2018, 126, 353–362, https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.149.Search in Google Scholar

22. Hou, J., Li, G. H., Yang, N., Qin, L. L., Grami, M. E., Zhang, Q. X., Wang, N. Y., Qu, X. W. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014, 4, 44282–44290, https://doi.org/10.1039/c4ra07394k.Search in Google Scholar

23. Gorbachev, R. V., Riaz, I., Nair, R. R., Jalil, R., Britnell, L., Belle, B. D., Hill, E. W., Novoselov, K. S., Watanabe, K., Taniguchi, T., Geim, A. K., Blake, P. Hunting for monolayer boron nitride: optical and Raman signatures. Small 2011, 7, 465–468, https://doi.org/10.1002/smll.201001628.Search in Google Scholar PubMed

24. Wang, Z. R., Fan, L., Li, R. L., Xu, Y. C., Fu, Q. Preparation of polymer composites with high thermal conductivity by constructing a “double thermal conductive network” via electrostatic spinning. Compos. Commun. 2022, 36, 101371, https://doi.org/10.1016/j.coco.2022.101371.Search in Google Scholar

25. Dong, J., Cao, L., Li, Y., Wu, Z. Q., Teng, C. Q. Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos. Sci. Technol. 2020, 196, 108242, https://doi.org/10.1016/j.compscitech.2020.108242.Search in Google Scholar

26. Zhang, Q., Li, Z., Li, X., Yu, L. G., Wu, Z. S. Boron nitride nanosheets decorated by bismuth ferrite particles: preparation, characterization, and effect on flame-retardant performance of epoxy resin. Mater. Res. Express 2018, 5, 095019.10.1088/2053-1591/aad744Search in Google Scholar

27. Zheng, X., Zhan, Y., Shi, J., Lu, M. G., Wu, K. Improved thermal conductivity and excellent electrical insulation properties of polysiloxane nanocomposite-incorporated functional boron nitride sheets via in situ polymerization. Nanoscale 2023, 15, 13025–13036, https://doi.org/10.1039/d3nr03287f.Search in Google Scholar PubMed

Received: 2023-08-03
Accepted: 2023-09-21
Published Online: 2023-10-17
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0188/pdf?lang=en
Scroll to top button