Startseite Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device

  • Xia Zhu , Linzhong Tao , Liping Chen , Siwei Xiong , Feihua Yang , Yingbin Jia ORCID logo EMAIL logo , Luoxin Wang und Hua Wang EMAIL logo
Veröffentlicht/Copyright: 19. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, a modified torque rheometer is used to investigate the volatilization behavior of monomer and oligomers in polyamide-6 (PA6) melt under dynamic film–forming conditions with negative pressure. The surface renewal model is employed to simulate the volatilization behavior. The effects of actual processing factors and simulation results on the volatilization behavior of monomer and oligomer are analyzed comparatively. It is found that the monomer and oligomers removal rate increase continuously with increasing temperature, residence time, and rotational speed. And, the cyclic dimer, which is extremely harmful to spinning, can be removed. It is found that the removal of monomer and oligomers continued to increase with increasing temperature, residence time, and spinning speed. Moreover, cyclic dimers, which are extremely harmful to spinning, are also removed. Additionally, it is discovered that the polycondensation reaction of PA6 results in an increase in the molecular weight and viscosity at lower temperatures (250 °C), while a higher temperature (270 °C) and shear rate (150 r/min) cause a reduction in viscosity and molecular weight.


Corresponding authors: Yingbin Jia and Hua Wang, College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan, China, E-mail: (Y. Jia), (H. Wang)
Xia Zhu and Linzhong Tao contributed equally to this work.

Funding source: Sichuan Province Key Research Projects

Award Identifier / Grant number: 2023YFG0345

Funding source: State Key Laboratory of Solid Waste Reuse for Building Materials

Award Identifier / Grant number: SWR-2022-008

Funding source: China National Textile and Apparel Council Application Fundamental Research Project

Award Identifier / Grant number: J202101

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: This work was supported by China National Textile and Apparel Council Application Fundamental Research Project (J202101), State Key Laboratory of Solid Waste Reuse for Building Materials (SWR-2022-008), and Sichuan Province Key Research Projects (2023YFG0345).

  5. Data availability: The authors confirm that the data supporting the findings of this study are available within the article.

References

1. Žagar, E., Češarek, U., Drinčić, A., Sitar, S., Shlyapnikov, I. M., Pahovnik, D. Quantitative determination of PA6 and/or PA66 content in polyamide-containing wastes. ACS Sustainable Chem. Eng. 2020, 8, 11818–11826; https://doi.org/10.1021/acssuschemeng.0c04190.Suche in Google Scholar

2. Kumar, S. S., Kanagaraj, G. Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites. J. Polym. Eng. 2017, 37, 547–557; https://doi.org/10.1515/polyeng-2015-0441.Suche in Google Scholar

3. Čolović, M., Vasiljević, J., Štirn, Ž., Korošin, N. Č., Šobak, M., Simončič, B., Demšar, A., Malucelli, G., Jerman, I. New sustainable flame retardant DOPO-NH-functionalized polyamide 6 and filament yarn. Chem. Eng. J. 2021, 426, 130760; https://doi.org/10.1016/j.cej.2021.130760.Suche in Google Scholar

4. Khun, N. W., Cheng, H. K. F., Li, L., Liu, E. Thermal, mechanical and tribological properties of polyamide 6 matrix composites containing different carbon nanofillers. J. Polym. Eng. 2015, 4, 367–376; https://doi.org/10.1515/polyeng-2013-0241.Suche in Google Scholar

5. He, W., Gao, J., Liao, S., Wang, X., Qin, S. A facile method to improve thermal stability and flame retardancy of polyamide 6. Compos. Commun. 2019, 13, 143–150; https://doi.org/10.1016/j.coco.2019.04.010.Suche in Google Scholar

6. El-Gendi, A., Abdallah, H. Thermodynamic modeling of polyamide-6 (PA-6)/cellulose acetate (CA) blend membrane prepared via casting technique. J. Polym. Eng. 2013, 33, 701–712; https://doi.org/10.1515/polyeng-2013-0132.Suche in Google Scholar

7. Zhen, G., Yu, S. Compatibilization of polyamide 6/poly(2,6-dimethyl-1,4-phenylene oxide) blends by poly(styrene-co-maleic anhydride). J. Polym. Eng. 2014, 34, 193–199; https://doi.org/10.1515/polyeng-2013-0163.Suche in Google Scholar

8. Reimschuessel, H. K., Nagasubramanian, K. On the optimization of caprolactam polymerization. Chem. Eng. Sci. 1972, 27, 1119–1130; https://doi.org/10.1016/0009-2509(72)80023-x.Suche in Google Scholar

9. Katzer, J. Hydrolytic caprolactam polymerization – progress in dynamic simulation. Macromol. React. Eng. 2014, 8, 658–665; https://doi.org/10.1002/mren.201400006.Suche in Google Scholar

10. Peng, L., Li, J., Peng, S., Yi, C., Jiang, F. The crystal-form transition behaviours and morphology changes in a polyamide 6 cyclic dimer. R. Soc. Open Sci. 2018, 5, 180957; https://doi.org/10.1098/rsos.180957.Suche in Google Scholar PubMed PubMed Central

11. Heikens, D. Determination of the individual cyclic oligomers in equilibrium systems from caprolactam and water. Recl. Trav. Chim. Pays-Bas 1956, 75, 1199–1204; https://doi.org/10.1002/recl.19560751015.Suche in Google Scholar

12. Silvestro, G. D., Sozzani, P., Brückner, S., Malpezzi, L., Guaita, C. Solid state and solution characterization of caprolactam cyclic dimer, a by-product in the synthesis of nylon 6. Die Makromolekulare Chem. 1987, 188, 2745–2757; https://doi.org/10.1002/macp.1987.021881125.Suche in Google Scholar

13. Hoshino, K. Studies on synthetic polyamides (VI) dimeric ε-caprolactam. Bull. Chem. Soc. Jpn. 2006, 21, 63–64; https://doi.org/10.1246/bcsj.21.63.Suche in Google Scholar

14. Negoro, S. Biodegradation of nylon oligomers. Appl. Microbiol. Biotechnol. 2000, 54, 461–466; https://doi.org/10.1007/s002530000434.Suche in Google Scholar PubMed

15. Liu, F. F., Hurley, J. M., Khare, N. P., McAuley, K. B. Mathematical modeling of nylon 6/6,6 copolymerization in batch reactor: investigating recipes without water and with cyclic dimer. Macromol. React. Eng. 2018, 12, 1700040; https://doi.org/10.1002/mren.201700040.Suche in Google Scholar

16. Yi, C., Yang, C., Li, J., Chen, J., Zhang, S., Sun, H. Agglomeration behaviour of caprolactam solution concentrates triggered by cyclic dimers in the recovery process: characterisation, mechanism, and process optimisation. Process Saf. Environ. Prot. 2020, 136, 56–65; https://doi.org/10.1016/j.psep.2020.01.026.Suche in Google Scholar

17. Qin, C., Tang, J., Bi, F., Xi, Z., Zhao, L. Experimental and simulation study of nylon 6 solid–liquid extraction process. Chin. J. Chem. Eng. 2018, 26, 1022–1030; https://doi.org/10.1016/j.cjche.2017.12.002.Suche in Google Scholar

18. Reimschuessel, H. K. Nylon 6. Chemistry and mechanisms. J. Polym. Sci. Macromol. Rev. 1977, 12, 65–139; https://doi.org/10.1002/pol.1977.230120102.Suche in Google Scholar

19. Sakai, T. Report on the state of the art: reactive processing using twin-screw extruders. Adv. Polym. Technol. 1991, 11, 99–108; https://doi.org/10.1002/adv.1991.060110203.Suche in Google Scholar

20. Ghose, S., Isayev, A. I. Ultrasonic devulcanization of unfilled polyurethane rubber using coaxial and grooved barrel reactors: a comparative study. J. Polym. Eng. 2005, 25, 331–344; https://doi.org/10.1515/polyeng.2005.25.4.331.Suche in Google Scholar

21. Yazdani, H., Karrabi, M., Ghasmi, I., Azizi, H., Bakhshandeh, G. R. Devulcanization of waste tires using a twin-screw extruder: the effects of processing conditions. J. Vinyl Addit. Technol. 2011, 17, 64–69; https://doi.org/10.1002/vnl.20257.Suche in Google Scholar

22. Maridass, B., Gupta, B. R. Process optimization of devulcanization of waste rubber powder from syringe stoppers by twin screw extruder using response surface methodology. Polym. Compos. 2008, 29, 1350–1357; https://doi.org/10.1002/pc.20379.Suche in Google Scholar

23. Hermans, P. H. Cyclic polyamides from nylon 6 and 6.6 polymers: intramolecular hydrogen bonds in certain cyclic polyamides. Nature 1956, 177, 127–128; https://doi.org/10.1038/177127a0.Suche in Google Scholar

24. Kržan, A., Miertus, S. Theoretical and experimental examination of ε-caprolactam dimer stability. Macromol. Chem. Phys. 2002, 203, 1643–1649; https://doi.org/10.1002/1521-3935(200207)203:10/11<1643::aid-macp1643>3.0.co;2-z.10.1002/1521-3935(200207)203:10/11<1643::AID-MACP1643>3.0.CO;2-ZSuche in Google Scholar

25. Bonifaci, L., Ravanetti, G. P. Measurement of infinite dilution diffusion coefficients of ε-caprolactam in nylon 6 at elevated temperatures by inverse gas chromatography. J. Chromatogr. A 1992, 607, 145–149; https://doi.org/10.1016/0021-9673(92)87066-h.Suche in Google Scholar

26. Abdallah, H., Jamil, T. S., Shaban, A. M., Mansor, E. S., Souaya, E. R. Influence of the polyacrylonitrile proportion on the fabricated UF blend membranes’ performance for humic acid removal. J. Polym. Eng. 2018, 38, 129–136; https://doi.org/10.1515/polyeng-2017-0003.Suche in Google Scholar

27. Wang, J., Han, C., Sen, Y., Li, W., Niu, J., Sun, Y., Wu, X. Research and application of low odour-emitting car interior decoration special material prepared by screw devolatilizing. Eng. Plast. Appl. 2009, 37, 53–55.Suche in Google Scholar

28. Zaitsau, D. H., Paulechka, Y. U., Kabo, G. J., Kolpikau, A. N. Thermodynamics of the sublimation and of the vaporization of ε-caprolactam. J. Chem. Eng. Data 2006, 51, 130–135; https://doi.org/10.1021/je050277k.Suche in Google Scholar

29. Kang, P., Wu, P., Jin, Y., Shi, S., Lin, Q. Study on screw devolatilizing technology of polypropylene for automobile. Petrochem. Technol. 2018, 47, 286–290.Suche in Google Scholar

30. Marx, N., Fernández, L., Barceló, F., Spikes, H. Shear thinning and hydrodynamic friction of viscosity modifier-containing oils. Part II: impact of shear thinning on journal bearing friction. Tribol. Lett. 2018, 66, 1–14; https://doi.org/10.1007/s11249-018-1040-z.Suche in Google Scholar

31. Vázquez-Quesada, A., Tanner, R. I., Ellero, M. Shear thinning of noncolloidal suspensions. Phys. Rev. Lett. 2016, 117, 108001; https://doi.org/10.1103/physrevlett.117.108001.Suche in Google Scholar

32. Ianniruberto, G., Marrucci, G. Origin of shear thinning in unentangled polystyrene melts. Macromolecules 2020, 53, 1338–1345; https://doi.org/10.1021/acs.macromol.9b02330.Suche in Google Scholar

33. Kim, S. K. Collective viscosity model for shear thinning polymeric materials. Rheol. Acta 2020, 59, 63–72.10.1007/s00397-019-01180-wSuche in Google Scholar

34. Cencha, L. G., Urteaga, R., Berli, C. L. A. Interferometric technique to determine the dynamics of polymeric fluids under strong confinement. Macromolecules 2018, 51, 8721–8728; https://doi.org/10.1021/acs.macromol.8b01504.Suche in Google Scholar

35. Yang, Z. G., Lauke, B. Investigations on the simulation of the reactive extrusion of nylon 6. J. Appl. Polym. Sci. 1995, 57, 679–685; https://doi.org/10.1002/app.1995.070570604.Suche in Google Scholar

Received: 2023-06-13
Accepted: 2023-09-06
Published Online: 2023-10-19
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0142/pdf?lang=de
Button zum nach oben scrollen