Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
Abstract
Polyurethane (PU) blended with nano-bactericidal agents was one of the most ways to obtain PU with antimicrobial properties. However, the bactericidal agent nanoparticles cannot effectively enrich the PU surface to reduce their antimicrobial properties. In this study, nano-silica particles with a large number of polar quaternary ammonium salt (N,N-dimethyl-3-aminopropyl-12-alkyl-ammonium bromide trimethylsilyl, denoted as QAC) can easily enrich the PU surface to endow PU with excellent antibacterial properties after they were blended with PU film. The QAC on the surface of silica with different diameters (denoted as SiO2-Q-X) can endow silica with antimicrobial properties and improve the repulsion between silica and PU to enhance the enrichment on PU surface of silica. A series of SiO2-Q-X/PU blend films were prepared and applied to inhibit the growth of the bacterial colony. The SiO2-Q-X/PU films can inhibit the growth of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The SiO2-Q-X with more polar QAC was easily enriched on the surface of PU and had a better bactericidal effect than those of SiO2-Q-X with a minor polar QAC. Moreover, the aging of the SiO2-Q-X/PU films did not affect their antibacterial effect.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21975108
Award Identifier / Grant number: 52273089
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare no conflicts of interest.
-
Research funding: This work was supported by the National Natural Science Foundation of China (21975108, 52273089).
-
Data availability: All data is available in the main text. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.
References
1. Aguirresarobe, R. H., Nevejans, S., Reck, B., Irusta, L., Sardon, H., Asua, J. M., Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362, https://doi.org/10.1016/j.progpolymsci.2021.101362.Suche in Google Scholar
2. Jiang, H., Ye, L., Wang, Y., Ma, L., Cui, D., Tang, T. Synthesis and characterization of polypropylene-based polyurethanes. Macromolecules 2020, 53, 3349–3357, https://doi.org/10.1021/acs.macromol.0c00159.Suche in Google Scholar
3. Khan, A., Naveed, M., Rabnawaz, M. Melt-reprocessing of mixed polyurethane thermosets. Green Chem. 2021, 23, 4771–4779, https://doi.org/10.1039/d1gc01232k.Suche in Google Scholar
4. Ma, Z., Zhang, J., Liu, L., Zheng, H., Dai, J., Tang, L.-C., Song, P. A highly fire-retardant rigid polyurethane foam capable of fire-warning. Compos. Commun. 2022, 29, 101046, https://doi.org/10.1016/j.coco.2021.101046.Suche in Google Scholar
5. Schneiderman, D. K., Vanderlaan, M. E., Mannion, A. M., Panthani, T. R., Batiste, D. C., Wang, J. Z., Bates, F. S., Macosko, C. W., Hillmyer, M. A. Chemically recyclable biobased polyurethanes. ACS Macro Lett. 2016, 5, 515–518, https://doi.org/10.1021/acsmacrolett.6b00193.Suche in Google Scholar PubMed
6. Sessini, V., Thai, C. N., Amorin, H., Jimenez, R., Samuel, C., Caillol, S., Cornil, J., Hoyas, S., Barrau, S., Dubois, P., Leclere, P., Raquez, J. M. Solvent-free design of biobased non-isocyanate polyurethanes with ferroelectric properties. ACS Sustainable Chem. Eng. 2021, 9, 14946–14958, https://doi.org/10.1021/acssuschemeng.1c05380.Suche in Google Scholar PubMed PubMed Central
7. Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J. M., Laycock, B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 2019, 90, 211–268, https://doi.org/10.1016/j.progpolymsci.2018.12.003.Suche in Google Scholar
8. Wu, D. D., Tan, Y., Cao, Z. W., Han, L. J., Zhang, H. L., Dong, L. S. Preparation and characterization of maltodextrin-based polyurethane. Carbohydr. Polym. 2018, 194, 236–244, https://doi.org/10.1016/j.carbpol.2018.04.034.Suche in Google Scholar PubMed
9. Sai, F., Zhang, H., Qu, J., Wang, J., Zhu, X., Bai, Y., Ye, P. Multifunctional waterborne polyurethane films: amine-response, thermal-driven self-healing, and recyclability. Appl. Surf. Sci. 2022, 573, 151526, https://doi.org/10.1016/j.apsusc.2021.151526.Suche in Google Scholar
10. Godinho, B., Gama, N., Barros-Timmons, A., Ferreira, A. Recycling of different types of polyurethane foam wastes via acidolysis to produce polyurethane coatings. Sustainable Mater. Technol. 2021, 29, e00330, https://doi.org/10.1016/j.susmat.2021.e00330.Suche in Google Scholar
11. Mršić, I., Lorenz, A., Lehnert, R. J., Lorenz, G., Chassé, T. Irganox separation in spin-coated polyurethane thin films. Appl. Surf. Sci. 2022, 578, 151957, https://doi.org/10.1016/j.apsusc.2021.151957.Suche in Google Scholar
12. Zhong, Q., Chen, X., Yang, Y., Cui, C., Ma, L., Li, Z., Zhang, Q., Chen, X., Cheng, Y., Zhang, Y. Hydrogen bond reinforced, transparent polycaprolactone-based degradable polyurethane. Mater. Chem. Front. 2021, 5, 5371–5381, https://doi.org/10.1039/d1qm00476j.Suche in Google Scholar
13. Kang, S. Y., Ji, Z., Tseng, L. F., Turner, S. A., Villanueva, D. A., Johnson, R., Albano, A., Langer, R. Design and synthesis of waterborne polyurethanes. Adv. Mater. 2018, 30, e1706237, https://doi.org/10.1002/adma.201706237.Suche in Google Scholar PubMed
14. Magnin, A., Entzmann, L., Bazin, A., Pollet, E., Averous, L. Green recycling process for polyurethane foams by a chem-biotech approach. ChemSusChem 2021, 14, 4234–4241, https://doi.org/10.1002/cssc.202100243.Suche in Google Scholar PubMed
15. Xu, C., Hong, Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact. Mater. 2022, 15, 250–271, https://doi.org/10.1016/j.bioactmat.2021.11.029.Suche in Google Scholar PubMed PubMed Central
16. Wendels, S., Averous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106, https://doi.org/10.1016/j.bioactmat.2020.10.002.Suche in Google Scholar PubMed PubMed Central
17. Marzec, M., Kucinska-Lipka, J., Kalaszczynska, I., Janik, H. Development of polyurethanes for bone repair. Bioact. Mater. 2017, 80, 736–747, https://doi.org/10.1016/j.msec.2017.07.047.Suche in Google Scholar PubMed
18. Wang, Y., Wang, H., Li, Z., Yang, D., Qiu, X., Liu, Y., Yan, M., Li, Q. Fabrication of litchi-like lignin/zinc oxide composites with enhanced antibacterial activity and their application in polyurethane films. J. Colloid Interface Sci. 2021, 594, 316–325, https://doi.org/10.1016/j.jcis.2021.03.033.Suche in Google Scholar PubMed
19. Lin, D., Yang, Y., Wang, J., Yan, W., Wu, Z., Chen, H., Zhang, Q., Wu, D., Qin, W., Tu, Z. Preparation and characterization of TiO(2)-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int. J. Biol. Macromol. 2020, 154, 123–133, https://doi.org/10.1016/j.ijbiomac.2020.03.070.Suche in Google Scholar PubMed
20. Wang, H., Yan, R., Zou, Y., Xing, D., Zhong, K. Light-driven self-healing polyurethane based on PDA@Ag nanoparticles with improved mechanical and antibacterial properties. J. Mater. Chem. B 2022, 10, 1085–1093, https://doi.org/10.1039/d1tb02710g.Suche in Google Scholar PubMed
21. Li, S., Zhang, Y., Ma, X., Qiu, S., Chen, J., Lu, G., Jia, Z., Zhu, J., Yang, Q., Chen, J., Wei, Y. Antimicrobial lignin-based polyurethane/Ag composite foams for improving wound healing. Biomacromolecules 2022, 23, 1622–1632, https://doi.org/10.1021/acs.biomac.1c01465.Suche in Google Scholar PubMed
22. Park, S.-H., Ko, Y.-S., Park, S.-J., Lee, J. S., Cho, J., Baek, K.-Y., Kim, I. T., Woo, K., Lee, J.-H. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J. Membr. Sci. 2016, 499, 80–91, https://doi.org/10.1016/j.memsci.2015.09.060.Suche in Google Scholar
23. Jatoi, A. W. Polyurethane nanofibers incorporated with ZnAg composite nanoparticles for antibacterial wound dressing applications. Compos. Commun. 2020, 19, 103–107, https://doi.org/10.1016/j.coco.2020.03.004.Suche in Google Scholar
24. Lai, H., Liu, Y., Huang, G., Chen, Y., Song, Y., Ma, Y., Yue, P. Fabrication and antibacterial evaluation of peppermint oil-loaded composite microcapsules by chitosan-decorated silica nanoparticles stabilized Pickering emulsion templating. Int. J. Biol. Macromol. 2021, 183, 2314–2325, https://doi.org/10.1016/j.ijbiomac.2021.05.198.Suche in Google Scholar PubMed
25. Mozaffari, Z., Nikje, M.-M. A., Peymani, A. Synthesis and characterization of antibacterial polyurethane rigid foam nanocomposites by incorporation of tea tree oil as a natural biocide. Mater. Today Commun. 2022, 32, 104171, https://doi.org/10.1016/j.mtcomm.2022.104171.Suche in Google Scholar
26. Xu, Q., Sardon, H., Chan, J. M. W., Hedrick, J. L., Yang, Y. Y. Polyurethane-coated silica particles with broad-spectrum antibacterial properties. Polym. Chem. 2015, 6, 2011–2022, https://doi.org/10.1039/c4py01455c.Suche in Google Scholar
27. Kang, Y., Sun, W., Li, S., Li, M., Fan, J., Du, J., Liang, X. J., Peng, X. Oligo hyaluronan-coated silica/hydroxyapatite degradable nanoparticles for targeted cancer treatment. Adv. Sci. 2019, 6, 1900716, https://doi.org/10.1002/advs.201900716.Suche in Google Scholar PubMed PubMed Central
28. Teruel, A. H., Perez-Esteve, E., Gonzalez-Alvarez, I., Gonzalez-Alvarez, M., Costero, A. M., Ferri, D., Parra, M., Gavina, P., Merino, V., Martinez-Manez, R., Sancenon, F. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: new approaches for inflammatory bowel diseases treatment. J. Controlled Release 2018, 281, 58–69, https://doi.org/10.1016/j.jconrel.2018.05.007.Suche in Google Scholar PubMed
29. Shenwei Shi, T. L., Yang, W., Dong, W. Preparation of antibacterial hybrid silica nanoparticle and its application in polyurethane. Acta Polym. Sin. 2019, 50, 721–729.Suche in Google Scholar
30. Kuang, Z., Dai, G., Wan, R., Zhang, D., Zhao, C., Chen, C., Li, J., Gu, H., Huang, W. Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold. Genes Dis. 2021, 8, 193–202, https://doi.org/10.1016/j.gendis.2019.09.014.Suche in Google Scholar PubMed PubMed Central
31. Guillaume, O., Geven, M. A., Sprecher, C. M., Stadelmann, V. A., Grijpma, D. W., Tang, T. T., Qin, L., Lai, Y., Alini, M., de Bruijn, J. D., Yuan, H., Richards, R. G., Eglin, D. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater. 2017, 54, 386–398, https://doi.org/10.1016/j.actbio.2017.03.006.Suche in Google Scholar PubMed
32. Michailidis, M., Sorzabal-Bellido, I., Adamidou, E. A., Diaz-Fernandez, Y. A., Aveyard, J., Wengier, R., Grigoriev, D., Raval, R., Benayahu, Y., D’Sa, R. A., Shchukin, D. Modified mesoporous silica nanoparticles with a dual synergetic antibacterial effect. ACS Appl. Mater. Interfaces 2017, 9, 38364–38372, https://doi.org/10.1021/acsami.7b14642.Suche in Google Scholar PubMed
33. Maguire, S. M., Demaree, J. D., Boyle, M. J., Keller, A. W., Bilchak, C. R., Kagan, C. R., Murray, C. B., Ohno, K., Composto, R. J. Surface enrichment of polymer-grafted nanoparticles in a miscible polymer nanocomposite. Macromolecules 2022, 55, 7724–7731, https://doi.org/10.1021/acs.macromol.2c00839.Suche in Google Scholar
34. Bandyopadhyay, D., Douglas, J. F., Karim, A. Influence of C60 nanoparticles on the stability and morphology of miscible polymer blend films. Macromolecules 2011, 44, 8136–8142, https://doi.org/10.1021/ma201201v.Suche in Google Scholar
35. Huq, A. F., Zvonkina, I., Al-Enizi, A. M., Karim, A. Controlling nanoparticle crystallinity and surface enrichment in polymer (P3HT)/nanoparticle (PCBM) blend films with tunable soft confinement. Polymer 2018, 136, 37–46, https://doi.org/10.1016/j.polymer.2017.12.037.Suche in Google Scholar
36. Yu, F., Gao, J., Liu, C., Chen, Y., Zhong, G., Hodges, C., Chen, M., Zhang, H. Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating. Prog. Org. Coat. 2020, 141, 105556, https://doi.org/10.1016/j.porgcoat.2020.105556.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of super critical carbon dioxide and alkali treatment on oxygen barrier properties of thermoplastic starch/poly(vinyl alcohol) films
- Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
- Improving anti-aging performance of terminal blend rubberized bitumen by using graft activated crumb rubber
- An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites
- Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
- Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
- Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
- Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
- Engineering and Processing
- Numerical simulation on the mixing behavior of double-wave screw under speed sinusoidal pulsating enhancement induced by differential drive
- Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of super critical carbon dioxide and alkali treatment on oxygen barrier properties of thermoplastic starch/poly(vinyl alcohol) films
- Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
- Improving anti-aging performance of terminal blend rubberized bitumen by using graft activated crumb rubber
- An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites
- Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
- Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
- Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
- Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
- Engineering and Processing
- Numerical simulation on the mixing behavior of double-wave screw under speed sinusoidal pulsating enhancement induced by differential drive
- Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles