Home Influence mechanisms of 2-amino-1,3,5-triazine-4,6-dithiol coating on adhesion properties of polybutylene terephthalate/aluminum interface in nano-injection molding
Article
Licensed
Unlicensed Requires Authentication

Influence mechanisms of 2-amino-1,3,5-triazine-4,6-dithiol coating on adhesion properties of polybutylene terephthalate/aluminum interface in nano-injection molding

  • Pan Zeng , Donglei Liu EMAIL logo , Xin Luo , Kai Zhan and Tian Yuan
Published/Copyright: August 9, 2022
Become an author with De Gruyter Brill

Abstract

Four interfacial models, including the PBT-Al&P (Plane), PBT-Al&V (V-slot), PBT-ATD-Al&P (Plane), and PBT-ATD-Al&V (V-slot), were constructed. The molecular dynamics (MD) method was launched to study the interfacial interactions and bonding behaviors between heterogeneous interfaces in nano-injection molding. The influence mechanism of the 2-amino-1,3,5-triazine-4,6-dithiol (ATD) coating on adhesion properties of the PBT–Al interface was mainly explored. Results indicated that the nano-V-slot interface system exhibited a double-wall-slipping phenomenon, unlike the non-nano-interface (macroscale molding) one. In nano-V-slot interfacial models, although the ATD coating reduced the double-wall-slipping velocity, it also increased the polar bonding, thus strengthened a better anchoring connection in the PBT–ATD–Al interface. The addition of the ATD layer did not cause chemical bonding of the original PBT materials; the interlocking effect behavior occurred between them and only coexisted in the form of physical anchors. Whatever model it was, the ATD layer interface had significantly higher interface energy than the other one, which was formed solely by PBT and Al substrate. In nano-injection molding, when the ATD intermediate layer was added, the bonding behavior of the PBT–Al interface also changed from simple nonbonded rigid anchoring to the entanglement anchor between the PBT–ATD macrochains and the nonbonding connections between ATD-Al interfaces.


Corresponding author: Donglei Liu, School of Advanced Manufacturing, Nanchang University, No. 999, Xuefu Road, NanChang, Jiangxi 330031, P. R. China, E-mail:

Award Identifier / Grant number: 52165046

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the National Natural Science Foundation of China (no. 52165046). We thank the anonymous reviewers, whose comments have helped improve the presentation of our work.

  3. Conflict of interest statement: No conflict of interest exits in the submission of this manuscript, and the manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. We further confirm that all authors have checked the manuscript and have agreed to the submission.

References

1. Grujicic, M., Sellappan, V., Omar, M. A., Seyr, N., Obieglo, A., Erdmann, M., Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Tech. 2008, 197, 363–373.10.1016/j.jmatprotec.2007.06.058Search in Google Scholar

2. Ramani, K., Moriarty, B. Thermoplastic bonding to metals via injection molding for macro-composite manufacture. Polym. Eng. Sci. 1998, 38, 870–877.10.1002/pen.10253Search in Google Scholar

3. Schroers, J., Hodges, T. M., Kumar, G., Raman, H., Barnes, A. J., Pham, Q., Waniuk, T. A. Thermoplastic blow molding of metals. Mater. Today 2011, 14, 14–19.10.1016/S1369-7021(11)70018-9Search in Google Scholar

4. Zink, B., Szabo, F., Hatos, I., Suplicz, A., Kovacs, N. K., Hargitai, H., Tabi, T., Kovacs, J. G. Enhanced injection molding simulation of advanced injection molds. Polymers-Basel 2017, 9, 77.10.3390/polym9020077Search in Google Scholar

5. Zhang, N., Byrne, C. J., Browne, D. J., Gilchrist, M. D. Towards nano-injection molding. Mater. Today 2012, 15, 216–221.10.1016/S1369-7021(12)70092-5Search in Google Scholar

6. Lin, H. Y., Chang, C. H., Young, W. B. Experimental and analytical study on filling of nano structures in micro injection molding. Int. Commun. Heat Mass. 2010, 37, 1477–1486.10.1016/j.icheatmasstransfer.2010.08.017Search in Google Scholar

7. Wang, G. L., Zhao, G. Q., Dong, G. W., Mu, Y., Park, C. B. Lightweight and strong microcellular injection molded PP/talc nanocomposite. Compos. Sci. Technol. 2018, 168, 38–46.10.1016/j.compscitech.2018.09.009Search in Google Scholar

8. Aliyeva, N., Sas, H. S., Okan, B. S. Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Bs. Compos. Part A-Appl. S. 2021, 149, 106525.10.1016/j.compositesa.2021.106525Search in Google Scholar

9. Valverde, M. A., Kupfer, R., Wollmann, T., Kawashita, L., Gude, M., Hallett, S. R. Influence of component design on features and properties in thermoplastic overmoulded composites. Compos. Part A-Appl. S. 2020, 132, 105823.10.1016/j.compositesa.2020.105823Search in Google Scholar

10. Harte, A. M., Namara, J. F. M. Overinjection of thermoplastic composites I. Processing and testing of components. J. Mater. Process. Tech. 2007, 182, 12–20.10.1016/j.jmatprotec.2006.06.016Search in Google Scholar

11. Nie, M. H., Zhang, S., Wang, Z. Y., Zhang, H. F., Zhang, C. H., Chen, H. T. Development of a novel method for measuring the interfacial bonding strength of laser cladding coatings. Opt. Laser Technol. 2022, 148, 107699.10.1016/j.optlastec.2021.107699Search in Google Scholar

12. Iwasaki, T. Molecular dynamics study of diffusion and atomic configuration in layered structures for Al circuit interconnects. Comput. Mech. 1999, 24, 148–154.10.1007/s004660050447Search in Google Scholar

13. Lin, B., Li, J. J., Wang, Z. J., Wang, J. C. Dislocation nucleation from Zr-Nb bimetal interfaces cooperating with the dynamic evolution of interfacial dislocations. Int. J. Plasticity 2020, 135, 102830.10.1016/j.ijplas.2020.102830Search in Google Scholar

14. Liu, D. L., Zhou, F., Zhou, H. Z. The polymer-metal interactive behavior in polyphenylene sulfide/aluminium hetero interface in nano injection molding. Compos. Interface 2020, 27, 277–288.10.1080/09276440.2019.1626138Search in Google Scholar

15. Liu, D. L., Zhou, F., Li, H. C., Xin, Y., Yi, Z. W. Study on the interfacial interactions and adhesion behaviors of various polymer-metal interfaces in nano molding. Polym. Eng. Sci. 2021, 61, 95–106.10.1002/pen.25558Search in Google Scholar

16. Wang, Q., Sun, L. Y., Li, L. J., Yang, W., Zhang, Y. B., Dai, Z. M., Xiong, Z. K. Experimental and numerical investigations on microstructures and mechanical properties of hybrid fiber reinforced thermoplastic polymer. Polym. Test. 2018, 70, 215–225.10.1016/j.polymertesting.2018.07.010Search in Google Scholar

17. Jiang, B. Y., Zhang, M. H., Fu, L., Zhou, M. Y., Zhai, Z. Y. Molecular dynamics simulation on the interfacial behavior of over-molded hybrid fiber reinforced thermoplastic composites. Polymers-Basel 2020, 12, 1270.10.3390/polym12061270Search in Google Scholar PubMed PubMed Central

18. Stadlmann, A., Mautner, A., Pramreiter, M., Bismarck, A., Muller, U. Interfacial adhesion and mechanical properties of wood-polymer hybrid composites prepared by injection molding. Polymers-Basel 2021, 13, 2849.10.3390/polym13172849Search in Google Scholar PubMed PubMed Central

19. Weng, C., Ding, T., Zhou, M. Y., Liu, J. Z., Wang, H. Formation mechanism of residual stresses in micro-injection molding of PMMA: a molecular dynamics simulation. Polymers-Basel 2020, 12, 1368.10.3390/polym12061368Search in Google Scholar PubMed PubMed Central

20. Kimura, F., Kadoya, S., Kajihara, Y. Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface. Precis. Eng. 2016, 45, 203–208.10.1016/j.precisioneng.2016.02.013Search in Google Scholar

21. Maghsoudi, K., Jafari, R., Momen, G., Farzaneh, M. Micro-nanostructured polymer surfaces using injection molding: a review. Mater. Today Commun. 2017, 13, 126–143.10.1016/j.mtcomm.2017.09.013Search in Google Scholar

22. Hopmann, C., Behmenburg, C., Recht, U., Zeuner, K. Injection molding of superhydrophobic liquid silicone rubber surfaces. Silicon-Neth. 2014, 6, 35–43.10.1007/s12633-013-9164-0Search in Google Scholar

23. Zhao, S. J., Kimura, F., Kadoya, S., Kajihara, Y. Experimental analysis on mechanical interlocking of metal-polymer direct joining. Precis. Eng. 2020, 61, 120–125.10.1016/j.precisioneng.2019.10.009Search in Google Scholar

24. Xu, D. H., Yang, W. J., Li, X. P., Hu, Z. L., Li, M. J., Wang, L. L. Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure. Appl. Surf. Sci. 2020, 515, 145996.10.1016/j.apsusc.2020.145996Search in Google Scholar

25. Liu, Y. S., Meng, F. B., Huang, J. C., Ni, L. J., Shen, Y. D., Zhang, L. Y. Polyphenylene sulfide- coated wrench composites by nanopinning effect. Nanotechnol. Rev. 2021, 10, 166–177.10.1515/ntrev-2021-0014Search in Google Scholar

26. Zhou, M. Y., Jiang, B. Y., Weng, C. Molecular dynamics study on polymer filling into nano-cavity by injection molding. Comp. Mater. Sci. 2016, 120, 36–42.10.1016/j.commatsci.2016.04.004Search in Google Scholar

27. Kang, D., Kim, H. I. Improvement in nano-pattern replication of injection molding by polyamide/dendrimer blend. Polym. Eng. Sci. 2021, 61, 822–829.10.1002/pen.25627Search in Google Scholar

28. Nagel, J., Brauer, M., Hupfer, B., Grundke, K., Schwarz, S., Lehmann, D. Investigations on the reactive surface modification of polycarbonate by surface-reactive injection molding. J. Appl. Polym. Sci. 2004, 93, 1186–1191.10.1002/app.20577Search in Google Scholar

29. Camargo, M. K., Uebel, M., Kurniawan, M., Ziegler, K. F., Seiler, M., Grieseler, R., Schmidt, U., Barz, A., Bliedtner, J., Bund, A. Selective metallization of polymers: surface activation of polybutylene terephthalate (PBT) assisted by picosecond laser pulses. Adv. Eng. Mater. 2021, 24, 2100933.10.1002/adem.202100933Search in Google Scholar

30. Wang, B. H., Hu, X. Z., Lu, P. M. Improvement of adhesive bonding of grit-blasted steel substrates by using diluted resin as a primer. Int. J. Adhes. Adhes. 2017, 73, 92–99.10.1016/j.ijadhadh.2016.11.012Search in Google Scholar

31. Liu, J., Yee, K. K., Lo, K. K. W., Zhang, K. Y., To, W. P., Che, C. M., Xu, Z. T. Selective Ag(I) binding, H2S sensing, and white-light emission from an easy-to-make porous conjugated polymer. J. Am. Chem. Soc. 2014, 136, 2818–2824.10.1021/ja411067aSearch in Google Scholar PubMed

32. Mays, R. L., Pourhossein, P., Savithri, D., Genzer, J., Chiechi, R. C., Dickey, M. D. Thiol-containing polymeric embedding materials for nanoskiving. J. Mater. Chem. C 2013, 1, 121–130.10.1039/C2TC00030JSearch in Google Scholar

33. Mori, K., Hirahara, H., Oishi, Y. Direct adhesion between electroless nickel-P plated metals and NBR compounds during curing. Rubber Chem. Technol. 1997, 70, 211–221.10.5254/1.3538426Search in Google Scholar

34. Chung, E. H., Jang, E. K., Hong, T. E., Kim, J. P., Kim, H. G., Jin, J. S., Hyun, M. H., Shin, D. S., Bae, J. S., Jeong, E. D. Adhesion of poly(phenylene sulfide) resin with polymeric film of triazine thiol on aluminum surface modified by anodic oxidation. J. Biomed. Nanotechnol. 2015, 11, 157–164.10.1166/jbn.2015.2027Search in Google Scholar PubMed

35. Xu, G. J., Wang, H. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate. Constr. Build. Mater. 2016, 121, 246–254.10.1016/j.conbuildmat.2016.05.167Search in Google Scholar

36. Huang, L., Zhou, W., Xu, H., Wang, L., Zou, J., Zhou, Q. M. Dynamic fluid states in organic-inorganic nanocomposite: implications for shale gas recovery and CO2 sequestration. Chem. Eng. J. 2021, 411, 128423.10.1016/j.cej.2021.128423Search in Google Scholar

37. Huang, L., Ning, Z. F., Wang, Q., Qi, R. R., Zeng, Y., Qin, H. B., Ye, H. T., Zhang, W. T. Molecular simulation of adsorption behaviors of methane, carbon dioxide and their mixtures on kerogen: effect of kerogen maturity and moisture content. Fuel 2017, 211, 159–172.10.1016/j.fuel.2017.09.060Search in Google Scholar

38. Zhou, M. Y., Fu, L., Jiang, F. Z., Jiang, B. Y., Drummer, D. Atomistic investigation on the wetting behavior and interfacial joining of polymer-metal interface. Polymers-Basel 2020, 12, 1696.10.3390/polym12081696Search in Google Scholar PubMed PubMed Central

39. Lou, Y., Wu, G., Feng, Y. F. Wall slip behaviour of polymers based on molecular dynamics at the micro/nanoscale and its effect on interface thermal resistance. Polymers-Basel 2020, 12, 2182.10.3390/polym12102182Search in Google Scholar PubMed PubMed Central

40. Li, H. C., Cai, Z. M., Zhou, F., Liu, D. L. MD simulation analysis of the anchoring behavior of injection-molded nanopits on polyphenylene sulfide/Cu interface. Compos. Interface. 2022, 29, 431–446.10.1080/09276440.2021.1949102Search in Google Scholar

41. Men, H. A molecular dynamics study of growth anisotropy in Al melt. Model Simul. Mater. Sci. 2016, 24, 015008.10.1088/0965-0393/24/1/015008Search in Google Scholar

42. Sun, H. Compass: an ab initio force-field optimized for condensed-phase applications - overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364.10.1021/jp980939vSearch in Google Scholar

43. Mori, H., Matubayasi, N. MD simulation analysis of resin filling into nano-sized pore formed on metal surface. Appl. Surf. Sci. 2018, 427, 1084–1091.10.1016/j.apsusc.2017.08.123Search in Google Scholar

44. Lippert, R. A., Predescu, C., Ierardi, D. J., Mackenzie, K. M., Eastwood, M. P., Dror, R. O., Shaw, D. E. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J. Chem. Phys. 2013, 139, 164106.10.1063/1.4825247Search in Google Scholar PubMed

45. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., DiNola, A., Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.10.1063/1.448118Search in Google Scholar

46. Wu, X. W., Liu, Z. C., Zhu, W. H. External electric field induced conformational changes as a buffer to increase the stability of CL-20/HMX cocrystal and its pure components. Mater. Today Commun. 2021, 26, 101696.10.1016/j.mtcomm.2020.101696Search in Google Scholar

47. Cui, W. T., Huang, W. K., Hassan, H. M. Z. Study on the interfacial contact behavior of carbon nanotubes and asphalt binders and adhesion energy of modified asphalt on aggregate surface by using molecular dynamics simulation. Constr. Build. Mater. 2022, 316, 125849.10.1016/j.conbuildmat.2021.125849Search in Google Scholar

48. Wang, Q., Huang, L. Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite: effect of clay structure and water content. Fuel 2019, 239, 32–43.10.1016/j.fuel.2018.10.149Search in Google Scholar

Received: 2022-05-26
Accepted: 2022-07-06
Published Online: 2022-08-09
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0118/html?lang=en
Scroll to top button