Abstract
The review considers the possibilities of new methods of solid-state extrusion of polymers based on the use of deformation schemes that include simple shear - equal-channel angular extrusion, equal-channel multi-angle extrusion and combined extrusion. Information on the evolution of the physico-mechanical properties of glassy, semi-crystalline polymers, polymer blends and composites is given.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Porter, R. S., Wang, L.-H. Uniaxial extrusion and order development in flexible chain polymers. J.M.S.-Rev. Macromol. Chem. Phys. 1995, 35C, 63–115; https://doi.org/10.1080/15321799508014590.Suche in Google Scholar
2. Beygelzimer, Y. E., Beloshenko, V. A. Solid state extrusion. In Encyclopedia of Polymer Science and Technology; Kroschwitz, J. I., Ed. Wiley: Hoboken, Vol. 11, 2004; pp. 850–866.10.1002/0471440264.pst343Suche in Google Scholar
3. Beloshenko, V., Vozniak, I., Beygelzimer, Y., Estrin, Y., Kulagin, R. Severe plastic deformation of polymers. Mater. Trans. 2019, 60, 1192–1202.10.2320/matertrans.MF201912Suche in Google Scholar
4. Beloshenko, V. A., Varyukhin, V. N., Voznyak, A. V., Voznyak, Y. V. Solid-phase extrusion of polyamide-6 by using combined deformation schemes. Polym. Eng. Sci. 2011, 51, 1092–1098; https://doi.org/10.1002/pen.21835.Suche in Google Scholar
5. Beloshenko, V. A., Varyukhin, V. N., Voznyak, A. V., Voznyak, Yu.V. Equal-channel multiangular extrusion of semicrystalline polymers. Polym. Eng. Sci. 2010, 50, 1000–1006; https://doi.org/10.1002/pen.21613.Suche in Google Scholar
6. Xia, Z., Hartwig, T., Sue, H.-J. Mechanical behavior of bulk poly(ethylene terephthalate) subjected to simple shear. J. Macromol. Sci. 2004, 43B, 385–403; https://doi.org/10.1081/mb-120029776.Suche in Google Scholar
7. Aour, B., Zairi, F., Nait-Abdelaziz, M., Gloagnen, J. M., Lefebvre, J. M. Analysis of polypropylene deformation in a 135° equal channel angular extrusion die: experiments and three-dimensional finite element simulation. Key Eng. Mater. 2010, 424, 71–78.10.4028/www.scientific.net/KEM.424.71Suche in Google Scholar
8. Sue, H.-J., Dilan, H., Li, C. K.-Y. Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: finite element methods modeling. Polym. Eng. Sci. 1999, 39, 2505–2515; https://doi.org/10.1002/pen.11638.Suche in Google Scholar
9. Li, C. K.-Y., Xia, Z.-Y., Sue, H.-J. Simple shear plastic deformation behavior of polycarbonate plate II. Mechanical property characterization. Polymer 2000, 41, 6285–6293; https://doi.org/10.1016/s0032-3861(99)00837-x.Suche in Google Scholar
10. Xia, Z., Sue, H.-J., Hsieh, A. J. Impact fracture behavior of molecularly orientated polycarbonate sheets. J. Appl. Polym. Sci. 2001, 9, 2060–2066; https://doi.org/10.1002/1097-4628(20010314)79:11<2060::aid-app1015>3.0.co;2-e.10.1002/1097-4628(20010314)79:11<2060::AID-APP1015>3.0.CO;2-ESuche in Google Scholar
11. Weon, J. I., Creasy, T. S., Sue, H.-J., Hsieh, A. J. Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym. Eng. Sci. 2005, 45, 314–324; https://doi.org/10.1002/pen.20269.Suche in Google Scholar
12. Yoshioka, S., Tsukamoto, K. Effect of ECAE on plastic deformation behavior of glassy polymers. Jpn. Soc. Mater. Sci. 2009, 58, 29–34; https://doi.org/10.2472/jsms.58.29.Suche in Google Scholar
13. Bouaksa, F., Ovalle, R. C. M., Zaïri, F. G., Stoclet, G., Naït-Abdelaziz, M., Gloaguen, J. M., Tamine, T., Lefebvre, J. M. Molecular chain orientation in polycarbonate during equal channel angular extrusion: experiments and simulations. Comput. Mater. Sci. 2014, 85, 244–252; https://doi.org/10.1016/j.commatsci.2013.12.028.Suche in Google Scholar
14. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V. Effects of equal-channel, multiple-angular extrusion on the physical and mechanical properties of glassy polymers. J. Appl. Polym. Sci. 2015, 132, 42180; https://doi.org/10.1002/app.42180.Suche in Google Scholar
15. Sue, H.-J., Li, C. K.-Y. Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process. J. Mater. Sci. Lett. 1998, 17, 853–856.10.1023/A:1006659127256Suche in Google Scholar
16. Campbell, B., Edward, G. Equal channel angular extrusion of polyalkenes. Plast Rubb. Comp. 1999, 28, 467–475; https://doi.org/10.1179/146580199101540033.Suche in Google Scholar
17. Xia, Z.-Y., Sue, H.-J., Rieker, T. P. Morphological evolution of poly(ethylene terephthalate) during equal channel angular extrusion process. Macromolecules 2000, 33, 8746–8755; https://doi.org/10.1021/ma001140w.Suche in Google Scholar
18. Xia, Z., Sue, H.-J., Hsieh, A. J., Huang, J. W.-L. Dynamic mechanical behavior of oriented semicrystalline polyethylene terephthalate. J. Polym. Sci. 2001, 39B, 1394–1403; https://doi.org/10.1002/polb.1111.Suche in Google Scholar
19. Phillips, A., Zhu, P., Edward, G. Simple shear deformation of polypropylene via the equal channel angular extrusion process. Macromolecules 2006, 39, 5796–5803; https://doi.org/10.1021/ma0607618.Suche in Google Scholar
20. Wang, Z.-G., Xia, Z.-Y., Yu, Z.-Q., Chen, E.-Q., Sue, H.-J., Han, C. C., Hsiao, B. S. Lamellar formation and relaxation in simple sheared poly(ethylene terephthalate) by small-angle X-ray scattering. Macromolecules 2006, 39, 2930–2939; https://doi.org/10.1021/ma051928k.Suche in Google Scholar
21. Boulahia, R., Gloaguen, J. M., Zaïri, F., Naït-Abdelaziz, M., Seguela, R., Boukharouba, T., Lefebvre, J. M. Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of back-pressure and extrusion velocity. Polymer 2009, 50, 5508–5517; https://doi.org/10.1016/j.polymer.2009.09.050.Suche in Google Scholar
22. Wang, T., Tang, S., Chen, J. Effect of processing route on morphology and mechanical behavior of polypropylene in equal- channel angular extrusion. J. Appl. Polym. Sci. 2011, 122, 2146–2158; https://doi.org/10.1002/app.34335.Suche in Google Scholar
23. Qiu, J., Murata, T., Wu, X., Kitagawa, M., Kudo, M. Plastic deformation mechanism of crystalline polymer materials in the equal-channel angular extrusion process. J. Mater. Process. Technol. 2012, 212, 1528–1536; https://doi.org/10.1016/j.jmatprotec.2012.02.015.Suche in Google Scholar
24. Beloshenko, V. A., Varyukhin, V. N., Voznyak, A. V., Voznyak, Y. V. Polyoxymethylene orientation by equal-channel multiple angular extrusion. J. Appl. Polym. Sci. 2012, 126, 837–844; https://doi.org/10.1002/app.36971.Suche in Google Scholar
25. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V., Dudarenko, G. V. Equal-channel multiple angular extrusion of polyethylene. J. Appl. Polym. Sci. 2013, 127, 1377–1386; https://doi.org/10.1002/app.37993.Suche in Google Scholar
26. Beloshenko, V. A., Voznyak, A. V., Voznyak, Yu.V. Control of the mechanical and thermal properties of semicrystalline polymers via a new processing route of the equal channel multiple angular extrusion. Polym. Eng. Sci. 2014, 54, 531–539; https://doi.org/10.1002/pen.23583.Suche in Google Scholar
27. Beloshenko, V., Beygelzimer, Y., Voznyak, Y., Savchenko, B., Dmitrenko, V. Reinforcing effect caused by equal channel multiple angular extrusion of polymers manufactured by the FDM process: experimental investigation and mathematical modelling. J. Appl. Polym. Sci. 2018, 135, 45727; https://doi.org/10.1002/app.45727.Suche in Google Scholar
28. Vozniak, I., Beloshenko, V., Savchenko, B., Voznyak, A. Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion. J. Appl. Polym. Sci. 2021, 138, 49720; https://doi.org/10.1002/app.49720.Suche in Google Scholar
29. Boulahia, R., Zaïri, F., Vozniak, I., Gloaguen, J. M. Repeated equal-channel angular extrusion of polypropylene: processing routes and back-pressure influence. Mater. Today Commun. 2021, 26, 101754; https://doi.org/10.1016/j.mtcomm.2020.101754.Suche in Google Scholar
30. Bartczak, Z., Argon, A. S., Cohen, R. E. Texture evolution in large strain simple shear deformation of high density polyethylene. Polymer 1994, 35, 3427–3441; https://doi.org/10.1016/0032-3861(94)90905-9.Suche in Google Scholar
31. Li, H., Huang, C., Huang, X. Structure and properties of polypropylene/high-density polyethylene blends by solid equal-channel angular extrusion. Appl. Polym. Sci. 2014, 131, 39759; https://doi.org/10.1002/app.39759.Suche in Google Scholar
32. Creasy, T. S., Kang, Y. S. Fiber orientation during equal channel angular extrusion of short fiber reinforced thermoplastics. J. Thermoplast. Compos. Mater. 2004, 17, 205–227; https://doi.org/10.1177/0892705704035403.Suche in Google Scholar
33. Weon, J. I., Sue, H.-J. Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 2005, 46, 6325–6334; https://doi.org/10.1016/j.polymer.2005.05.094.Suche in Google Scholar
34. Weon, J. I., Xia, Z.-Y., Sue, H.-J. Morphological characterization of nylon-6 nanocomposite following a large-scale shear process. J. Polym. Sci. 2005, 43B, 3555–3566; https://doi.org/10.1002/polb.20649.Suche in Google Scholar
35. Creasy, T. S., Kang, Y. S. Fiber fracture during equal-channel angular extrusion of short fiber-reinforced thermoplastics. J. Mater. Process. Technol. 2005, 160, 90–98; https://doi.org/10.1016/j.jmatprotec.2004.04.369.Suche in Google Scholar
36. Ma, J., Simon, G. P., Edward, G. H. The effect of shear deformation on nylon-6 and two types of nylon-6/clay nanocomposite. Macromolecules 2008, 41, 409–420; https://doi.org/10.1021/ma071580o.Suche in Google Scholar
37. Seo, Y. R., Weon, J. Manipulation of nanofiller and polymer structures by using equal channel angular extrusion. J. Kor. Phys. Soc. 2013, 63, 114–119; https://doi.org/10.3938/jkps.63.114.Suche in Google Scholar
38. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y.V., Novokshonova, L. A., Grinyov, V. G. Effect of simple shear induced orientation process on the morphology and properties of polyolefin/graphite nanoplates composites. Compos. Sci. Technol. 2017, 139, 47–56; https://doi.org/10.1016/j.compscitech.2016.12.009.Suche in Google Scholar
39. Beloshenko, V. A., Voznyak, A. V., Voznyak, Yu.V., Savchenko, B. New approach to production of fiber reinforced polymer hybrid composites. Compos. Part B. 2017, 112, 22–30; https://doi.org/10.1016/j.compositesb.2016.12.030.Suche in Google Scholar
40. Beloshenko, V. A., Voznyak, A. V., Vozniak, I., Savchenko, B. Effects of orientation ordering of low-density polyethylene—multi-walled carbon nanotubes composites determined by severe plastic deformation. Polym. Eng. Sci. 2019, 59, 714–723; https://doi.org/10.1002/pen.24987.Suche in Google Scholar
41. Al-Goussous, S., Wu, X., Yuan, Q., Xia, K. Back pressure equal channel angular consolidation of nylon 12. Mater. Forum 2007, 31, 36–38.Suche in Google Scholar
42. Pawlak, A., Vozniak, I., Krajenta, J., Beloshenko, V., Galeski, A. Strain-induced consolidation of partially disentangled polypropylene. Express Polym. Lett. 2021, 15, 940–956; https://doi.org/10.3144/expresspolymlett.2021.76.Suche in Google Scholar
43. Zhang, X., Gao, D., Wu, X., Xia, K. Bulk plastic materials obtained from processing raw powder of renewable natural polymers via back pressure equal-channel angular consolidation (BP-ECAC). Eur. Polym. J. 2008, 44, 780–792; https://doi.org/10.1016/j.eurpolymj.2007.12.011.Suche in Google Scholar
44. Zhang, X., Wu, X., Gao, D., Xia, K. Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr. Polym. 2012, 87, 2470–2476; https://doi.org/10.1016/j.carbpol.2011.11.019.Suche in Google Scholar
45. Bai, Yu., Zhang, X., Xia, K. High strength biocomposites consolidated from hardwood particles by severe plastic deformation. Cellulose 2019, 26, 1067–1084; https://doi.org/10.1007/s10570-018-2125-4.Suche in Google Scholar
46. Bai, Yu., Zhang, X., Xia, K. Biocomposites produced from hardwood particles by equal channel angular pressing without additives. J. Compos. Sci. 2019, 3, 36; https://doi.org/10.3390/jcs3020036.Suche in Google Scholar
47. Bai, Yu., Zhang, X., Xia, K. Biocomposites produced from hardwood particles by equal channel angular pressing: effects of pre-treatment. J. Compos. Sci. 2020, 4, 181; https://doi.org/10.3390/jcs4040181.Suche in Google Scholar
48. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V. Modification of polyamide-6 structure by combined methods of solid-phase extrusion. High Pres. Res. 2011, 31, 153–157; https://doi.org/10.1080/08957959.2010.534989.Suche in Google Scholar
49. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V., Glasunova, V. A., Konstantinova, T. E. Polyamide-6 structure modification by combined solid-phase extrusion. Polym. Eng. Sci. 2012, 52, 1815–1820; https://doi.org/10.1002/pen.23123.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
- A comparative investigation on wear characteristics of polymer and biopolymer gears
- Unsaturated polyester resin modified with a novel reactive flame retardant: effects on thermal stability and flammability
- Recent progress on the morphology and thermal cycle of phase change materials (PCMs)/conductive filler composites: a mini review
- Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
- Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements
- Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites
- Engineering and processing
- Quality prediction and control of thin-walled shell injection molding based on GWO-PSO, ACO-BP, and NSGA-II
- Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
- Solid-state extrusion of polymers using simple shear deformation
- Molding process and properties of polyimide-fiber-fabric-reinforced polyether ether ketone composites
Artikel in diesem Heft
- Frontmatter
- Material properties
- Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
- A comparative investigation on wear characteristics of polymer and biopolymer gears
- Unsaturated polyester resin modified with a novel reactive flame retardant: effects on thermal stability and flammability
- Recent progress on the morphology and thermal cycle of phase change materials (PCMs)/conductive filler composites: a mini review
- Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
- Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements
- Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites
- Engineering and processing
- Quality prediction and control of thin-walled shell injection molding based on GWO-PSO, ACO-BP, and NSGA-II
- Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
- Solid-state extrusion of polymers using simple shear deformation
- Molding process and properties of polyimide-fiber-fabric-reinforced polyether ether ketone composites