Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
-
Feng Pan
, Muhammad Khan, Li Tiehu
, Elisha Javed
, Amjad Hussain , Amir Zada, Dang Alei
and Zainul Wahab
Abstract
Nanodiamonds (NDs), the allotropic carbon nanomaterials with nanosize, durable inert core, adjustable surface morphology, high thermal constancy, and super mechanical performances, possess the characteristics of promising reinforcement materials for various technological applications. However, ND particles hold a vigorous propensity to aggregate in liquid media, obstructing their implementation in mechanical and thermal sciences. This aggregation is caused by high surface to volume ratio. By reducing the surface energy and lowering cluster formation, the mechanical and thermal properties of NDs can be polished. Herein, we report on the covalent functionalization of NDs with amine moiety through ball milling method. Their dispersion was checked in ethanol and polymethyl methacrylate (PMMA polymer) against nonfunctionalized NDs. The dispersive behavior showed that ball mill functionalized NDs produced preferably stable aqueous dispersions in ethanol media. Furthermore, 0.1, 0.2, and 0.4 wt% ND/PMMA composites were synthesized, and their mechanical and thermal behaviors were studied in terms of hardness, compression, Young`s modulus, flexural strength, tensile strength, and thermogravimetric analysis (TGA). Results revealed that the composites containing 0.2 wt% functionalized ND loaded with PMMA matrix showed outstanding mechanical and thermal performances indicating that 0.2 wt% is the optimum amount for achieving excellent outcomes.
Funding source: Natural Science Foundation of Shaanxi Province
Award Identifier / Grant number: 2016JQ5108
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research has received postdoctoral funding from the Shaanxi Province and Natural Science Foundation of China (grant no. 2020M673475). The authors also very grateful to the Higher Education Commission of Pakistan for SRGP funding under project no. 2562.
-
Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.
References
1. Khan, M., Tiehu, L., Khurram, A. A., Zhao, T. K., Xiong, C., Ali, Z., Abbas, T. A., Asmatullah, A. I., Lone, A. L., Iqbal, S., Khan, A. Active sites determination and de-aggregation of detonation nanodiamond particles. Chiang Mai J. Sci. 2017, 44, 1–14.Search in Google Scholar
2. Raziq, F., Khan, K., Ali, S., Ali, S., Xu, H., Ali, I., Zada, A., Ismail, P. M., Ali, A., Khan, H., Wu, X., Kong, Q., Zahoor, M., Xiao, H., Zu, X., Li, S., Qiao, L. Accelerating CO2 reduction on novel double perovskite oxide with sulfur, carbon incorporation: synergistic electronic and chemical engineering. Chem. Eng. J. 2022, 446, 137161; https://doi.org/10.1016/j.cej.2022.137161.Search in Google Scholar
3. Khan, M., Shahzad, N., Xiong, C., Zhao, T. K., Li, T., Siddique, F., Ali, N., Shahzad, M., Ullah, H., Rakha, S. A. Dispersion behavior and the influences of ball milling technique on functionalization of detonated nano-diamonds. Diam. Relat. Mater. 2016, 61, 32–40; https://doi.org/10.1016/j.diamond.2015.11.007.Search in Google Scholar
4. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane. Z. Phys. Chem. 2021, 235, 1791–1810; https://doi.org/10.1515/zpch-2020-1763.Search in Google Scholar
5. Marathe, D., Joshi, H., Kambli, P., Joshi, P. Study of effect of wood-flour content on mechanical, thermal, rheological properties and thermo formability of wood-polypropylene composites. J. Polym. Eng. 2022, 42, 1–8; https://doi.org/10.1515/polyeng-2021-0153.Search in Google Scholar
6. Poyraz, B., Unal, H., Dayı, M. Mesopore silica effect on chemical, thermal and tribological properties of polyimide composites. J. Polym. Eng. 2022, 42, 18–26; https://doi.org/10.1515/polyeng-2021-0146.Search in Google Scholar
7. Xiong, C., Li, T., Khan, M., Li, H., Zhao, T. A three-dimensional MnO2/graphene hybrid as a binder-free supercapacitor electrode. RSC Adv. 2015, 5, 85613–85619; https://doi.org/10.1039/c5ra14411f.Search in Google Scholar
8. Xu, T., Xu, H., Zhong, Y., Zhang, L., Qian, D., Hu, Y., Zhu, Y., Mao, Z. Preparation and characteristics of sepiolite-waterborne polyurethane composites. J. Polym. Eng. 2022, 42, 66–74; https://doi.org/10.1515/polyeng-2021-0175.Search in Google Scholar
9. Kalemtas, A., Kocer, H. B., Aydin, A., Terzioglu, P., Aydin, G. Mechanical and antibacterial properties of ZnO/chitosan bio-composite films. J. Polym. Eng. 2022, 42, 35–47; https://doi.org/10.1515/polyeng-2021-0143.Search in Google Scholar
10. Zada, A., Khan, M., Hussain, Z., Shah, M. I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z. Phys. Chem. 2021, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Search in Google Scholar
11. Raziq, F., Aligayev, A., Shen, H., Ali, S., Shah, R., Ali, S., Bakhtiar, S. H., Ali, A., Zarshad, N., Zada, A., Xia, X., Zu, X., Khan, M., Wu, X., Kong, Q., Liu, C., Qiao, L. Exceptional photocatalytic activities of rGO modified (B, N) co-doped WO3, coupled with CdSe QDs for one photon Z-scheme system: a joint experimental and DFT study. Adv. Sci. 2022, 9, 2102530; https://doi.org/10.1002/advs.202102530.Search in Google Scholar PubMed PubMed Central
12. Basiuk, V. A., Kakazey, M., Vlasova, M., Basiuk, E. V. Effect of structural defects on the strength of adsorption of La and Lu species on graphene. Diam. Relat. Mater. 2019, 100, 107597; https://doi.org/10.1016/j.diamond.2019.107597.Search in Google Scholar
13. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Facile synthesis of MoS2/Cu as trifunctional catalyst for electrochemical overall water splitting and photocatalytic CO2 conversion. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Search in Google Scholar
14. Taylor, A., Drahokoupil, J., Fekete, L., Klimsa, L., Kopecek, J., Purkrt, A., Remes, Z., Ctvrtlik, R., Tomastik, J., Frank, O., Janicek, P., Mistrik, J., Mortet, V. Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition. Diam. Relat. Mater. 2016, 69, 13–18; https://doi.org/10.1016/j.diamond.2016.06.014.Search in Google Scholar
15. Chuang, J., Chang, C., Chang, Y. J., Chou, P., Wen, Y., Liu, C., Chou, T., Chow, T. J. Synthesis of rod-shaped dipolar compounds for the study of long-range electronic interactions. J. Chin. Chem. Soc. 2021, 11, 2211–2223; https://doi.org/10.1002/jccs.202100205.Search in Google Scholar
16. Welz, S., Gogotsi, Y., McNallan, M. J. Nucleation, growth, graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 2003, 93, 4207–4214; https://doi.org/10.1063/1.1558227.Search in Google Scholar
17. Dang, A., Sun, Y., Fang, C., Li, T., Liu, X., Xia, Y., Ye, F., Zada, A., Khan, M. Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl. Surf. Sci. 2022, 58, 152432; https://doi.org/10.1016/j.apsusc.2022.152432.Search in Google Scholar
18. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Fabrication of highly dispersed Pt NPs in nanoconfined spaces of as-made KIT-6 for nitrophenol and MB catalytic reduction in water. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Search in Google Scholar
19. Zada, A., Ali, N., Ateeq, M., Flores, A. M. H., Hussain, Z., Shaheen, S., Ullah, M., Ali, S., Khan, I., Ali, W., Shah, M. I. A., Khan, W. Surface plasmon resonance excited electron induction greatly extends H2 evolution and pollutant degradation activity of g-C3N4 under visible light irradiation. J. Chin. Chem. Soc. 2020, 67, 983–989; https://doi.org/10.1002/jccs.201900398.Search in Google Scholar
20. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Preparation of activated porous glass adsorbent through thermochemical reforming of ampoules and eggshells for remediation of direct blue dye pollution. Asia Pac. J. Chem. Eng. 2021, 16, e2610; https://doi.org/10.1002/apj.2610.Search in Google Scholar
21. Yamada, H., Chayahara, A., Mokuno, Y. Method to increase the thickness and quality of diamond layers using plasma chemical vapor deposition under (H, C, N, O) system. Diam. Relat. Mater. 2020, 101, 107652; https://doi.org/10.1016/j.diamond.2019.107652.Search in Google Scholar
22. Behler, K. D., Stravato, A., Mochalin, V., Korneva, G., Yushin, G., Gogotsi, Y. Nanodiamond-polymer composite fibers and coatings. ACS Nano 2009, 3, 363–369; https://doi.org/10.1021/nn800445z.Search in Google Scholar PubMed
23. Neitzel, I., Mochalin, V., Knoke, I., Palmese, G. R., Gogotsi, Y. Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 2011, 71, 710–716; https://doi.org/10.1016/j.compscitech.2011.01.016.Search in Google Scholar
24. Khan, M., Khurram, A. A., Tiehu, L., Zhao, T. K., Ali, Z., Vivek, P. Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites. J. Mater. Sci. Technol. 2018, 34, 2424–2430; https://doi.org/10.1016/j.jmst.2018.06.014.Search in Google Scholar
25. Khan, M., Khurram, A. A., Tiehu, L., Zhao, T. K., Xiong, C., Ali, Z., Ali, N., Ullah, A. Reinforcement effect of acid modified nanodiamond in epoxy matrix for enhanced mechanical and electromagnetic properties. Diam. Relat. Mater. 2017, 78, 58–66; https://doi.org/10.1016/j.diamond.2017.08.001.Search in Google Scholar
26. Liu, S., Zada, A., Yu, X., Liu, F., Jin, G. NiFe2O4/g-C3N4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance. Chemosphere 2022, 135717; https://doi.org/10.1016/j.chemosphere.2022.135717.Search in Google Scholar PubMed
27. Tiainen, T., Myllymaki, T. T. T., Hatanpaa, T., Tenhu, H., Hietala, S. Polyelectrolyte stabilized nanodiamond dispersions. Diam. Relat. Mater. 2019, 95, 185–194; https://doi.org/10.1016/j.diamond.2019.04.019.Search in Google Scholar
28. Jiao, S., Li, T., Zhang, Y., Khan, M. A three-dimensional vertically aligned carbon nanotube/polyaniline composite as a supercapacitor electrode. RSC Adv. 2016, 6, 110592–110599; https://doi.org/10.1039/c6ra17674g.Search in Google Scholar
29. Subhani, T., Latif, M., Ahmad, I., Rakha, S. A., Ali, N., Khurram, A. A. Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Mater. Des. 2015, 87, 436–444; https://doi.org/10.1016/j.matdes.2015.08.059.Search in Google Scholar
30. Yang, Y., Dan, Y. Preparation of PMMA/SiO2 composite particles via emulsion polymerization. Colloid Polym. Sci. 2003, 281, 794–799; https://doi.org/10.1007/s00396-002-0845-2.Search in Google Scholar
31. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Y., Qi, K., Selvaraj, R., Liu, S., Jin, G. Plasmon-induced ZnO-Ag/AgCl photocatalyst for degradation of tetracycline hydrochloride. Desalination Water Treat. 2022, 245, 247–254; https://doi.org/10.5004/dwt.2022.27976.Search in Google Scholar
32. Shahzad, N., Chen, F., Khan, M. Photovoltaic characteristics of titania photoanodes modified with silver nanoparticles by pulsed laser deposition. Mater. Lett. 2016, 163, 266–226; https://doi.org/10.1016/j.matlet.2015.10.096.Search in Google Scholar
33. Mochalin, V. N., Shenderova, O., Ho, D., Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23; https://doi.org/10.1038/nnano.2011.209.Search in Google Scholar PubMed
34. Ali, N., Zada, A., Zahid, M., Ismail, A., Rafiq, M., Riaz, A., Khan, A. Enhanced photodegradation of methylene blue with alkaline and transition-metal ferrite nano photocatalysts under direct sun light irradiation. J. Chin. Chem. Soc. 2019, 66, 402–408; https://doi.org/10.1002/jccs.201800213.Search in Google Scholar
35. Zhang, J., Su, D. S., Blume, R., Schlogl, R., Wang, R., Yang, X., Gajovic, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam free dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. 2010, 49, 8640–8644; https://doi.org/10.1002/anie.201002869.Search in Google Scholar PubMed
36. Ali, Z., Tian, L., Khan, M., Zhao, P., Zhang, B., Ali, N., Zhang, Q. Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. J. Mol. Catal. B Enzym. 2016, 134, 129–135; https://doi.org/10.1016/j.molcatb.2016.10.011.Search in Google Scholar
37. Livramento, V., Correia, J. B., Shohoji, N., Osawa, E. Nanodiamond as an effective reinforcing component for nano-copper. Diam. Relat. Mater. 2007, 16, 202–204; https://doi.org/10.1016/j.diamond.2006.05.008.Search in Google Scholar
38. Khan, M., Hamid, A., Tiehu, L., Zada, A., Attique, F., Ahmad, N., Ullah, A., Hayat, A., Mahmood, I., Hussain, A., Khan, Y., Ahmad, I., Ali, A., Zhao, T. K. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites. Diam. Relat. Mater. 2020, 107, 107897; https://doi.org/10.1016/j.diamond.2020.107897.Search in Google Scholar
39. Xiong, C., Khan, M., Li, T., Zhao, T., Wang, J., Ji, X., Li, H., Liu, W., Shang, Y. Preparation of C/C-SiC composite by low temperature compression molding-liquid silicon infiltration and its application in automobile brake. Ceram. Int. 2016, 42, 1057–1062; https://doi.org/10.1016/j.ceramint.2015.09.030.Search in Google Scholar
40. Tang, Q., Cao, L., Lang, X., Zong, Y., Zong, C. Enhancement of thermoelectric and mechanical properties of thermoplastic vulcanizates (TPVs) with hydroxylated graphene by dynamic vulcanization. J. Polym. Eng. 2022, 42, 48–56; https://doi.org/10.1515/polyeng-2021-0140.Search in Google Scholar
41. Ali, Z., Li, T., Khan, M., Ali, N. Immobilization of lipase on iron oxide organic/inorganic hybrid particles, a review article. Int. J. Mater. Sci. 2018, 53, 106–117; https://doi.org/10.1515/rams-2018-0008.Search in Google Scholar
42. Szczypta, A. F., Jantas, D., Ciepiela, F., Grzonka, J. Graphene oxide conductive polymer nanocomposite coatings obtained by the EPD method as substrates for neurite outgrowth. Diam. Relat. Mater. 2020, 102, 107663; https://doi.org/10.1016/j.diamond.2019.107663.Search in Google Scholar
43. Zhang, S., Ji, G., Xia, T., Jia, J., Zhen, M., Li, Z., Hao, X. Effects of micro-carbon particles and nano-carbon dots induced structural and mechanical changes of C/C composites prepared by directional pulsed gas flow TG-CVI method. Diam. Relat. Mater. 2020, 105, 107759; https://doi.org/10.1016/j.diamond.2020.107759.Search in Google Scholar
44. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. Visible light-excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of ZnO semiconductor for pollutants degradation. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/jccs.202000205.Search in Google Scholar
45. Radouane, N., Depriester, M., Maaroufi, A., Singh, D. P., Ouaki, B., Duponchel, B., Elass, A., Tidahy, L., Sahraoui, A. H. Synthesis, mechanical, thermal, electrical characterization of graphite-epoxy composites. J. Chin. Chem. Soc. 2021, 68, 1456–1465; https://doi.org/10.1002/jccs.202000490.Search in Google Scholar
46. Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982; https://doi.org/10.1103/physrev.56.978.Search in Google Scholar
47. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int. J. Hydrogen Energy 2020, 45, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Search in Google Scholar
48. Zhao, T. K., Jin, W., Wang, Y., Ji, X., Yan, H., Khan, M., Jiang, Y., Dang, A., Li, H., Li, T. Facile synthesis of graphene nanosheets via barium ferrite assisted intercalation and secondary expansion of graphite. Mater. Lett. 2018, 212, 1–3; https://doi.org/10.1016/j.matlet.2017.10.052.Search in Google Scholar
49. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing SnO2 with g-C3N4. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Search in Google Scholar PubMed PubMed Central
50. Zhao, Y., Zada, A., Yang, Y., Pan, J., Wang, Y., Yan, Z., Xu, Z., Qi, K. Photocatalytic removal of antibiotics on g-C3N4 using amorphous CuO as cocatalysts. Front. Chem. 2021, 9, 797738; https://doi.org/10.3389/fchem.2021.797738.Search in Google Scholar PubMed PubMed Central
51. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Probing the physio-chemical appraisal of green synthesized PbO nanoparticles in PbO-PVC nanocomposite polymer membranes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Search in Google Scholar PubMed
52. Khan, M., Li, T., Zaidi, S. B. A., Javed, E., Hussain, A., Hayat, A., Zada, A., Alei, D., Ullah, A. Synergistic effect of nanodiamond and titanium oxide nanoparticles on the mechanical, thermal an electrical properties of pitch derived carbon foam composites. Polym. Int. 2021, 70, 1733–1740; https://doi.org/10.1002/pi.6274.Search in Google Scholar
53. Zhang, T., Neumann, A., Lindlau, J., Wu, Y., Pramanik, G., Naydenov, B., Jelezko, F., Schuder, F., Huber, S., Huber, M., Stehr, F., Hogele, A., Weil, T., Liedl, T. DNA-based self-assembly of fluorescent nanodiamonds. J. Am. Chem. Soc. 2015, 137, 9776–9779; https://doi.org/10.1021/jacs.5b04857.Search in Google Scholar PubMed
54. Zada, A., Khan, M., Khan, M. A., Khan, Q., Yangjeh, A. H., Dang, A., Maqbool, M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ. Res. 2021, 195, 110742; https://doi.org/10.1016/j.envres.2021.110742.Search in Google Scholar PubMed
55. Chang, I. P., Hwang, K. C., Ho, J. A., Lin, C., Hwu, R. J. R., Horng, J. Facile surface functionalization of nanodiamonds. Langmuir 2010, 26, 3685–3689; https://doi.org/10.1021/la903162v.Search in Google Scholar PubMed
56. Chang, B., Lin, H., Su, L., Lin, W., Lin, R., Tzeng, Y., Lee, R. T., Lee, Y. C., Yu, A. L., Chang, H. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv. Funct. Mater. 2013, 23, 5737–5745; https://doi.org/10.1002/adfm.201301075.Search in Google Scholar
57. Khan, M., Tiehu, L., Hussain, A., Raza, A., Zada, A., Alei, D., Khan, A. R., Ali, R., Hussain, H., Hussain, J., Wahab, Z., Imran, M. Physiochemical evaluations, mechanical attenuations and thermal stability of graphene nanosheets and functionalized nanodiamonds loaded pitch derived carbon foam composites. Diam. Relat. Mater. 2022, 26, 109077; https://doi.org/10.1016/j.diamond.2022.109077.Search in Google Scholar
58. Zhang, Z., Zada, A., Cui, N., Liu, N., Liu, M., Yang, Y., Jiang, D., Jiang, J., Liu, S. Synthesis of Ag loaded ZnO/BiOCl with high photocatalytic performance for the removal of antibiotic pollutants. Crystals 2021, 11, 981; https://doi.org/10.3390/cryst11080981.Search in Google Scholar
59. Kaur, R., Chitanda, J. M., Michel, D., Maley, J., Borondics, F., Yang, P., Verrall, R. E., Badea, I. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, nucleic acid binding studies. Int. J. Nanomed. 2012, 7, 3851–3866.10.2147/IJN.S32877Search in Google Scholar PubMed PubMed Central
60. Jabeen, S., Gul, S., Kausar, A., Muhammad, B., Farooq, M. An innovative approach to the synthesis of PMMA/PEG/nanobifiller filled nanocomposites with enhanced mechanical and thermal properties. Polym. Plast. Technol. Eng. 2019, 58, 427–442; https://doi.org/10.1080/03602559.2018.1471721.Search in Google Scholar
61. Sundar, L. S., Singh, M. K., Sousa, A. C. M. Enhanced thermal properties of nanodiamond nanofluids. Chem. Phys. Lett. 2016, 644, 99–110; https://doi.org/10.1016/j.cplett.2015.11.028.Search in Google Scholar
62. Kausar, A. Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: physical properties and thermo-responsive shape-memory behavior. Int. J. Polym. Anal. Char. 2016, 21, 348–358; https://doi.org/10.1080/1023666x.2016.1156911.Search in Google Scholar
63. Saeed, K., Khan, I., Ahad, M., Shah, T., Sadiq, M., Zada, A., Zada, N. Preparation of ZnO/nylon 6/6 nanocomposites, their characterization and application in dye decolorization. Appl. Water Sci. 2021, 11, 105; https://doi.org/10.1007/s13201-021-01442-0.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
- A comparative investigation on wear characteristics of polymer and biopolymer gears
- Unsaturated polyester resin modified with a novel reactive flame retardant: effects on thermal stability and flammability
- Recent progress on the morphology and thermal cycle of phase change materials (PCMs)/conductive filler composites: a mini review
- Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
- Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements
- Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites
- Engineering and processing
- Quality prediction and control of thin-walled shell injection molding based on GWO-PSO, ACO-BP, and NSGA-II
- Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
- Solid-state extrusion of polymers using simple shear deformation
- Molding process and properties of polyimide-fiber-fabric-reinforced polyether ether ketone composites
Articles in the same Issue
- Frontmatter
- Material properties
- Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
- A comparative investigation on wear characteristics of polymer and biopolymer gears
- Unsaturated polyester resin modified with a novel reactive flame retardant: effects on thermal stability and flammability
- Recent progress on the morphology and thermal cycle of phase change materials (PCMs)/conductive filler composites: a mini review
- Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
- Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements
- Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites
- Engineering and processing
- Quality prediction and control of thin-walled shell injection molding based on GWO-PSO, ACO-BP, and NSGA-II
- Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
- Solid-state extrusion of polymers using simple shear deformation
- Molding process and properties of polyimide-fiber-fabric-reinforced polyether ether ketone composites