Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
Abstract
Radiation shielding composites based on polyvinyl chloride (PVC) reinforced with different weight ratios of Pb(NO3)2 (5, 10, and 20 wt%) were prepared using the solution-casting technique. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, and tensile testing method were used to characterize the PVC composite films. FTIR and XRD investigations illustrate the structural change and modification of the as-prepared PVC composites. The morphological analysis of the composite revealed that Pb(NO3)2 was dispersed uniformly within PVC polymer matrix. TGA revealed that the incorporation of Pb(NO3)2 improved the thermal stability of the investigated composites, whereas adding Pb(NO3)2 to the polymer matrix worsened its tensile properties. The as-prepared composite films were investigated for radiation-shielding of gamma-rays radioactive point sources (241Am, 133Ba, 137Cs, and 60Co). Linear attenuation coefficient (μ, cm−1), mass attenuation coefficient (μ/ρ, cm2/g), and half-value layer (HVL, cm) have been estimated from the obtained data using the MicroShield program. Reasonable agreement was attended between theoretical and experimental results. The deviation between the experiment and theoretical values of mass attenuation coefficient is being to be lower than 9%, and this can be correlated to the good distribution of Pb(NO3)2. The results revealed that adding Pb(NO3)2 to PVC polymer composites improved their mass attenuation coefficient.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Al-Buriahi, M. S., Singh, V. P., Arslan, H., Awasarmol, V. V., Tonguc, B. T. Gamma-ray attenuation properties of some NLO materials: potential use in dosimetry. Radiat. Environ. Biophys. 2020, 59, 145–150; https://doi.org/10.1007/s00411-019-00824–y.10.1007/s00411-019-00824-ySuche in Google Scholar PubMed
2. Singh, V. P., Badiger, N. M., Kaewkhao, J. Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 2014, 404, 167–173; https://doi.org/10.1016/j.jnoncrysol.2014.08.003.Suche in Google Scholar
3. Levet, A., Kavaz, E., Özdemir, Y. An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 2020, 819, 152946; https://doi.org/10.1016/j.jallcom.2019.152946.Suche in Google Scholar
4. Singh, V. P., Badiger, N. M., Chanthima, N., Kaewkhao, J. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 2014, 98, 14–21; https://doi.org/10.1016/j.radphyschem.2013.12.029.Suche in Google Scholar
5. More, C. V., Alavian, H., Pawar, P. P. Evaluation of gamma-ray attenuation characteristics of some thermoplastic polymers: experimental, WinXCom and MCNPX studies. J. Non-Cryst. Solids 2020, 546, 120277; https://doi.org/10.1016/j.jnoncrysol.2020.120277.Suche in Google Scholar
6. Rani, N., Vermani, Y. K., Singh, T. Gamma radiation shielding properties of some Bi-Sn-Zn alloys. J. Radiol. Prot. 2020, 40, 296–310; https://doi.org/10.1088/1361-6498/ab6aaf.Suche in Google Scholar PubMed
7. More, C. V., Pawar, P. P., Badawi, M. S., Thabet, A. A. Extensive theoretical study of gamma ray shielding parameters using epoxy resin-metal chloride mixtures. Nucl. Technol. Radiat. Protect. 2020, 35, 138–149; https://doi.org/10.2298/ntrp2002138m.Suche in Google Scholar
8. Mahmoud, K. A., Tashlykov, O. L., El Wakil, A. F., El Aassy, I. E. Aggregates grain size and press rate dependence of the shielding parameters for some concretes. Prog. Nucl. Energy 2020, 118, 103092; https://doi.org/10.1016/j.pnucene.2019.103092.Suche in Google Scholar
9. Zhou, Y. L., Zhu, X. N., Li, Y. J., Zheng, S. T., Li, L. Study on preparation and performance of γ ray protection coating. Adv. Mater. Res. Trans. Tech. Publ. 2011, 418-420, 835–839; https://doi.org/10.4028/www.scientific.net/amr.418-420.835.Suche in Google Scholar
10. Licheng, D., Ping, H., Yuanlin, Z., Kaiping, S., Kuihua, Y. Study on preparation of ultrafine lead tungstate for radiation protection and γ-ray shielding of the gloves. Radiat. Protect. 2012, 32, 160–164.Suche in Google Scholar
11. Abu El-soad, A. M., Sayed, M. I., Mahmoud, K. A., Şakar, E. S., Kovaleva, E. G. Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl. Radiat. Isot. 2019, 154, 108882; https://doi.org/10.1016/j.apradiso.2019.108882.Suche in Google Scholar PubMed
12. Ambika, M. R., Nagaiah, N., Suman, S. K. Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated poly-ester based polymer composites. J. Appl. Polym. Sci. 2017, 134, 1; https://doi.org/10.1002/app.44657.Suche in Google Scholar
13. Alavian, H., Samie, A., Tavakoli-Anbaran, H. Experimental and Monte Carlo investigations of gamma ray transmission and buildup factors for inorganic nanoparticle/epoxy composites. Radiat. Phys. Chem. 2020, 174, 108960; https://doi.org/10.1016/j.radphyschem.2020.108960.Suche in Google Scholar
14. Muzaffar, A., Ahamed, M. B., Deshmukh, K., Khadheer Pasha, S. K. Dielectric properties and electromagnetic interference shielding studies of nickel oxide and tungsten oxide reinforced polyvinylchloride nanocomposites. Polym. Plast. Technol. Mater. 2020, 59, 15, 1667–1678. https://doi.org/10.1080/25740881.2020.1759634.Suche in Google Scholar
15. Atashi, P., Rahmani, S., Ahadi, B., Rahmati, A. Effcient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3for gamma ray shielding application. J. Mater. Sci. Mater. Electron. 2018, 29, 10; https://doi.org/10.1007/s10854-018-9344-1.Suche in Google Scholar
16. Joshi, G. M., Deshmukh, K. Optimized quality factor of graphene oxide-reinforced PVC nanocomposite. J. Electron. Mater. 2014, 43; https://doi.org/10.1007/s11664-014-3010-z.Suche in Google Scholar
17. Mann, K. S., Rani, A., Heer, M. S. Shielding behaviors of some polymer and plastic materials for gamma-rays. Radiat. Phys. Chem. 2015, 106, 247–254; https://doi.org/10.1016/j.radphyschem.2014.08.005.Suche in Google Scholar
18. Bel, T., Arslan, C., Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2019, 221, 58–67.10.1016/j.matchemphys.2018.09.014Suche in Google Scholar
19. Ambika, M., Nagaiah, N., Harish, V., Lokanath, N., Sridhar, M., Renukappa, N., Suman, S. Preparation and characterization of isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat. Phys. Chem. 2017, 130, 351–358; https://doi.org/10.1016/j.radphyschem.2016.09.022.Suche in Google Scholar
20. Chang, L., Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., Zhang, W. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 356, 88–93; https://doi.org/10.1016/j.nimb.2015.04.062.Suche in Google Scholar
21. Muzaffar, A., Ahamed, M. B., Deshmukh, K., Faisal, M. Electromagnetic interference shielding properties of polyvinylchloride (PVC), barium titanate (BaTiO3) and nickel oxide (NiO) based nanocomposites. Polym. Test. 2019, 77, 105925; https://doi.org/10.1016/j.polymertesting.2019.105925.Suche in Google Scholar
22. Taha, T. A., Azab, A. A. Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J. Mol. Struct. 2019, 1178, 39–44; https://doi.org/10.1016/j.molstruc.2018.10.018.Suche in Google Scholar
23. Elashmawi, I. S., Hakeem, N. A., Marei, L. K., Hanna, F. F. Structure and performance of ZnO/PVC nanocomposites. Phys. B Phys. Condens. Matter. 2010, 405, 4163–4169; https://doi.org/10.1016/j.physb.2010.07.006.Suche in Google Scholar
24. Taha, T. A., Hendawy, N., El-Rabaie, S., Esmat, A., El-Mansy, M. K. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 2019, 76, 4769–4784; https://doi.org/10.1007/s00289-018-2633-2.Suche in Google Scholar
25. Mallakpour, S., Abdolmaleki, A., Tabebordbar, H. Production of PVC/αMnO2-KH550 nanocomposite films: morphology, thermal, mechanical and Pb(II) adsorption properties. Eur. Polym. J. 2016, 78, 141–152; https://doi.org/10.1016/j.eurpolymj.2016.03.022.Suche in Google Scholar
26. Mansour, S. A., Elsad, R. A., Izzularab, M. A. Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J. Polym. Res. 2016, 23, 85; https://doi.org/10.1007/s10965-016-0978-5.Suche in Google Scholar
27. Waly, E. A., Al-Qous, G. S., Bourham, M. A. Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300keV. Radiat. Phys. Chem. 2018, 150, 120–124; https://doi.org/10.1016/j.radphyschem.2018.04.029.Suche in Google Scholar
28. Waly, E. A., Fusco, M. A., Bourham, M. A. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 2016, 96, 26–30; https://doi.org/10.1016/j.anucene.2016.05.028.Suche in Google Scholar
29. Waly, E. A., Bourham, M. A. Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 2015, 85, 306–310; https://doi.org/10.1016/j.anucene.2015.05.011.Suche in Google Scholar
30. Gaikwad, D. K., Sayyed, M. I., Obaid, S. S., Issa, S. A. M., Pawar, P. P. Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. J. Alloys Compd 2018, 6, https://doi.org/10.1016/j.jallcom.2018.06.240.Suche in Google Scholar
31. Sayed, M. I., Akman, F., Kumar, A., Kaçal, M. R. Evaluation of radioprotection properties of some selected ceramic samples. Results Phys. 2018, 11, 1100–1104; https://doi.org/10.1016/j.rinp.2018.11.028.Suche in Google Scholar
32. Bel, T., Arslan, C., Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2018, 221, https://doi.org/10.1016/j.matchemphys.2018.09.014.Suche in Google Scholar
33. Nadimicherla, R., Kalla, R., Muchakayala, R., Guo, X. Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 2015, 278, 260–267; https://doi.org/10.1016/j.ssi.2015.07.002.Suche in Google Scholar
34. Karthika, P., Selvi, R., Prasadh, P. Structural and complex formation of PVC–LiNO3–CdO. Mech., Mater. Sci. Eng. MMSE J. Open Access 2017, 9, hal-01504680; https://doi.org/10.2412/mmse.65.100.626.Suche in Google Scholar
35. Reddy, Y. G., Sekar, M. C., Chary, A. S., Reddy, S. N. Ion dynamic studies through AC conductivity spectra on Pb(NO3)2:Al2O3 composite solid electrolytes. AIP Conf. Proc. 2017, 1832, 110049; https://doi.org/10.1063/1.4980673.Suche in Google Scholar
36. Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S., Rashed, A. R., El-Sharkawy, R. M., Thabet, A. A. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173; https://doi.org/10.1016/j.radphyschem.2017.10.017.Suche in Google Scholar
37. Kumagai, S., Hasegawa, I., Grause, G., Kameda, T., Yoshioka, T. Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2. J. Anal. Appl. Pyrol. 2015, 113, 584–590; https://doi.org/10.1016/j.jaap.2015.04.004.Suche in Google Scholar
38. Pawar, R. P. Study of thermal decomposition and instrumental analysis of synthesised polyvinyl alcohol polymer. Ultra Chem. 2015, 11, 1–6.Suche in Google Scholar
39. El-Gamal, S., Elsayed, M. Synthesis, structural, thermal, mechanical, and nanoscale free volume properties of novel PbO/PVC/PMMA nanocomposites. Polymer 2020, 206, 122911; https://doi.org/10.1016/j.polymer.2020.122911.Suche in Google Scholar
40. Rostam, S., Ali, A. K., Muhammad, F. H. A. Experimental investigation of mechanical properties of PVC polymer under different heating and cooling conditions. J. Eng. 2016, 1-5. Article ID 3791417; https://doi.org/10.1155/2016/3791417.Suche in Google Scholar
41. Al Naim, A., Alnaim, N., Ibrahim, S. S., Metwally, S. M. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017, 10, 165–171; https://doi.org/10.1016/j.jrras.2017.03.004.Suche in Google Scholar
42. Kiani, M., Parvaneh, V., Abbasi, M., Dadrasi, A. Fabrication and investigation of the mechanical properties of PVC/carbon fiber/grapheme nanocomposite pipes for oil and gas applications. J. Thermoplast. Compos. Mater. 2020, 1–16; https://doi.org/10.1177/0892705720930792.Suche in Google Scholar
43. Sayyed, M. I., Al Zaatreh, M. Y., Matori, K. A., Sidek, H. A. A., Zaid, M. H. M. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries. Results Phys. 2018, 9, 585–592; https://doi.org/10.1016/j.rinp.2018.01.057.Suche in Google Scholar
44. Mahmoud, K. A., Lacomme, E., Sayed, M. I., Ozpolat, O. F., Tashlykov, O. L. Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon 2020, 6, e03560; https://doi.org/10.1016/j.heliyon.2020.e03560.Suche in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity