Startseite Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization

  • Kadir Erol ORCID logo EMAIL logo , Demet Tatar , Aysel Veyisoğlu und Ali Tokatlı
Veröffentlicht/Copyright: 16. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Micron-sized magnetic particles currently find a wide range of applications in many areas including biotechnology, biochemistry, colloid sciences and medicine. In this study, magnetic poly(glycidyl methacrylate) microparticles were synthesized by providing a polymerization around Fe(II)-Ni(II) magnetic double salt. Adsorption of lysozyme protein from aqueous systems was studied with these particles. Adsorption studies were performed with changing pH values, variable amount of adsorbent, different interaction times and lysozyme amounts. The adsorption capacity of the particles was investigated, and a value of about 95.6 mg lysozyme/g microparticle was obtained. The enzyme activity of the immobilized lysozyme was examined and found to be more stable and reusable compared to the free enzyme. The immobilized enzyme still showed 80% activity after five runs and managed to maintain 78% of its initial activity at the end of 60 days. Besides, in the antimicrobial analysis study for six different microorganisms, the minimum inhibitory concentration value of lysozyme immobilized particles was calculated as 125 μg/mL like free lysozyme. Finally, the adsorption interaction was found to be compatible with the Langmuir isotherm model. Accordingly, it can be said that magnetic poly(GMA) microparticles are suitable materials for lysozyme immobilization and immobilized lysozyme can be used in biotechnological studies.


Corresponding author: Kadir Erol, Department of Medical Services and Techniques, Vocational School of Health Services, Hitit University, Ululavak Street, Çorum19030, Turkey, E-mail:

Acknowledgments

Because of their contributions to the study, we would like to cordially thank Prof. Dr. Dursun Ali Köse (Faculty of Art and Science, Department of Chemistry, Hitit University) and Prof. Dr. Nevzat Şahin (Faculty of Art and Science, Department of Biology, Ondokuz Mayıs University).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mokadem, Z., Saidi-Besbes, S., Lebaz, N., Elaissari, A. React. Funct. Polym. 2020, 155, 104693; https://doi.org/10.1016/j.reactfunctpolym.2020.104693.Suche in Google Scholar

2. Dinali, L. A. F., de Oliveira, H. L., Teixeira, L. S., da Silva, A. T. M., D’Oliveira, K. A., Cuin, A., Borges, K. B. Microchem. J. 2020, 154, 104648; https://doi.org/10.1016/j.microc.2020.104648.Suche in Google Scholar

3. Wichaita, W., Polpanich, D., Kaewsaneha, C., Jangpatarapongsa, K., Tangboriboonrat, P. Colloids Surf. B Biointerfaces 2019, 184, 110557; https://doi.org/10.1016/j.colsurfb.2019.110557.Suche in Google Scholar PubMed

4. Fang, L., Miao, Y., Wei, D., Zhang, Y., Zhou, Y. Chemosphere 2020, 262, 128032; https://doi.org/10.1016/j.chemosphere.2020.128032.Suche in Google Scholar PubMed

5. Tang, F., Ma, N., Tong, L., He, F., Li, L. Langmuir 2011, 28, 883–888; https://doi.org/10.1021/la203704j.Suche in Google Scholar PubMed

6. Wang, H., Wang, R., Wang, L., Tian, X. Colloid. Surface. Physicochem. Eng. Aspect. 2011, 384, 624–629; https://doi.org/10.1016/j.colsurfa.2011.05.031.Suche in Google Scholar

7. Sacanna, S., Philipse, A. Langmuir 2006, 22, 10209–10216; https://doi.org/10.1021/la0616505.Suche in Google Scholar PubMed

8. Li, Y., Ding, M. J., Wang, S., Wang, R. Y., Wu, X. L., Wen, T. T., Yuan, L. H., Dai, P., Lin, Y. H., Zhou, X. M. ACS Appl. Mater. Interfaces 2011, 3, 3308–3315; https://doi.org/10.1021/am2007855.Suche in Google Scholar PubMed

9. Kubo, T., Otsuka, K. Trac. Trends Anal. Chem. 2016, 81, 102–109; https://doi.org/10.1016/j.trac.2015.08.008.Suche in Google Scholar

10. Sarkar, S., Gulati, K., Mishra, A., Poluri, K. M. Int. J. Biol. Macromol. 2020, 467–482; https://doi.org/10.1016/j.ijbiomac.2020.02.179.Suche in Google Scholar PubMed

11. Sharma, M., Jaiswal, N., Kumar, D., Poluri, K. M. Biochem. J. 2019, 476, 613–628; https://doi.org/10.1042/bcj20180703.Suche in Google Scholar PubMed

12. Kobayakawa, S., Nakai, Y., Akiyama, M., Komatsu, T. Chem. Eur J. 2017, 23, 5044–5050; https://doi.org/10.1002/chem.201605055.Suche in Google Scholar PubMed

13. Alveroglu, E., İlker, N., Shah, M. T., Rajar, K., Gokceoren, A. T., Koc, K. Colloids Surf. B Biointerfaces 2019, 181, 981–988; https://doi.org/10.1016/j.colsurfb.2019.05.062.Suche in Google Scholar PubMed

14. Flores-Rojas, G. G., Pino-Ramos, V. H., López-Saucedo, F., Concheiro, A., Alvarez-Lorenzo, C., Bucio, E. Eur. Polym. J. 2017, 95, 27–40; https://doi.org/10.1016/j.eurpolymj.2017.07.040.Suche in Google Scholar

15. Kubiak-Ossowska, K., Cwieka, M., Kaczynska, A., Jachimska, B., Mulheran, P. A. Phys. Chem. Chem. Phys. 2015, 17, 24070–24077; https://doi.org/10.1039/c5cp03910j.Suche in Google Scholar PubMed

16. Inanan, T., Tüzmen, N., Karipcin, F. Int. J. Biol. Macromol. 2018, 114, 812–820; https://doi.org/10.1016/j.ijbiomac.2018.04.006.Suche in Google Scholar PubMed

17. Bayazidi, P., Almasi, H., Asl, A. K. Int. J. Biol. Macromol. 2018, 107, 2544–2551; https://doi.org/10.1016/j.ijbiomac.2017.10.137.Suche in Google Scholar PubMed

18. Nartop, D., Yetim, N. K., Özkan, E. H., Sarı, N. J. Mol. Struct. 2020, 1200, 127039; https://doi.org/10.1016/j.molstruc.2019.127039.Suche in Google Scholar

19. Li, Y., Zhang, C., Sun, Y. Chin. J. Chem. Eng. 2020, 28, 242–248; https://doi.org/10.1016/j.cjche.2019.03.002.Suche in Google Scholar

20. Ward, K., Taylor, A., Mohammed, A., Stuckey, D. C. Adv. Colloid Interface Sci. 2020, 275, 102079; https://doi.org/10.1016/j.cis.2019.102079.Suche in Google Scholar PubMed

21. Zhang, H., Li, H., Wang, K., Xia, Q., Zhou, D. Microporous Mesoporous Mater. 2020, 298, 110098; https://doi.org/10.1016/j.micromeso.2020.110098.Suche in Google Scholar

22. Erol, B., Erol, K., Gökmeşe, E. Process Biochem. 2019, 83, 104–113; https://doi.org/10.1016/j.procbio.2019.05.009.Suche in Google Scholar

23. Erol, K., Cebeci, B. K., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743; https://doi.org/10.1016/j.ijbiomac.2018.11.121.Suche in Google Scholar PubMed

24. Erol, K. J. Turk. Chem. Soc. Sec. A: Chem. 2017, 4, 133–148.10.18596/jotcsa.287321Suche in Google Scholar

25. Jesionowski, T., Zdarta, J., Krajewska, B. Adsorption 2014, 20, 801–821; https://doi.org/10.1007/s10450-014-9623-y.Suche in Google Scholar

26. Xu, W., Lou, Y., Xu, B., Li, Y., Xiong, Y., Jing, J. Int. J. Biol. Macromol. 2018, 120, 2175–2179; https://doi.org/10.1016/j.ijbiomac.2018.09.041.Suche in Google Scholar PubMed

27. Erol, K., Köse, K., Uzun, L., Say, R., Denizli, A. Colloids Surf. B Biointerfaces 2016, 146, 567–576; https://doi.org/10.1016/j.colsurfb.2016.06.060.Suche in Google Scholar PubMed

28. Forov, Y., Paulus, M., Dogan, S., Salmen, P., Weis, C., Gahlmann, T., Behrendt, A., Albers, C., Elbers, M., Schnettger, W. Langmuir 2018, 34, 5403–5408; https://doi.org/10.1021/acs.langmuir.8b00280.Suche in Google Scholar PubMed

29. Lin, Z. A., Zheng, J. N., Lin, F., Zhang, L., Cai, Z., Chen, G.-N. J. Mater. Chem. 2011, 21, 518–524; https://doi.org/10.1039/c0jm02300k.Suche in Google Scholar

30. Orhan, H., Evli, S., Dabanca, M. B., Başbülbül, G., Uygun, M., Uygun, D. A. Mater. Sci. Eng. C 2019, 94, 558–564; https://doi.org/10.1016/j.msec.2018.10.003.Suche in Google Scholar PubMed

31. Köse, K. J. Turk. Chem. Soc. Sec. A: Chem. 2016, 3, 185–204; https://doi.org/10.18596/jotcsa.74979.Suche in Google Scholar

32. Bilgin, E., Erol, K., Köse, K., Köse, D. A. Environ. Sci. Pollut. Control Ser. 2018, 25, 27614–27627; https://doi.org/10.1007/s11356-018-2784-6.Suche in Google Scholar PubMed

33. Jing, M., Song, W., Liu, R. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 164, 103–109.10.1016/j.saa.2016.04.008Suche in Google Scholar PubMed

34. Ghosh, S., Pandey, N. K., Bhattacharya, S., Roy, A., Nagy, N. V., Dasgupta, S. Int. J. Biol. Macromol. 2015, 76, 1–9; https://doi.org/10.1016/j.ijbiomac.2015.02.014.Suche in Google Scholar PubMed

35. Erol, K., Köse, K., Köse, D. A., Sızır, Ü., Tosun Satır, İ., Uzun, L. Desalin. Water Treat. 2016, 57, 9307–9317; https://doi.org/10.1080/19443994.2015.1030708.Suche in Google Scholar

36. Köse, K., Erol, K., Emniyet, A. A., Köse, D. A., Avcı, G. A., Uzun, L. Appl. Biochem. Biotechnol. 2015, 177, 1025–1039; https://doi.org/10.1007/s12010-015-1794-9.Suche in Google Scholar PubMed

37. Altıntaş, E. B., Denizli, A. Int. J. Biol. Macromol. 2006, 38, 99–106.10.1016/j.ijbiomac.2006.01.011Suche in Google Scholar PubMed

38. Lawal, A., Obaleye, J., Adediji, J., Amolegbe, S., Bamigboye, M., Yunus-Issa, M. J. Appl. Sci. Environ. Manag. 2014, 18, 205–208; https://doi.org/10.4314/jasem.v18i2.8.Suche in Google Scholar

39. Ji, Y. J. Food Eng. 2020, 285, 110088; https://doi.org/10.1016/j.jfoodeng.2020.110088.Suche in Google Scholar

40. Ellis, A. E. Techniques in Fish Immunology; Stolen, J. S., Fletcher, T. C., Anderson, D. P., Roberson, B. S., Mulswink, W. B., Eds., SOS Publications: Fair Haven, New Jersey, USA, 1996; p. 101.Suche in Google Scholar

41. Thornsberry, C. Lab. Med. 2016, 14, 549–553.10.1093/labmed/14.9.549Suche in Google Scholar

42. Erol, K., Uzunoglu, A., Köse, K., Sarıca, B., Avcı, E., Köse, D. A. J. Chromatogr. B 2018, 1081, 1–7; https://doi.org/10.1016/j.jchromb.2018.02.017.Suche in Google Scholar PubMed

43. Erol, K., Köse, K., Güngüneş, H., Köse, D. A. J. Mol. Struct. 2017, 1130, 753–759; https://doi.org/10.1016/j.molstruc.2016.11.004.Suche in Google Scholar

44. Elmogy, M., Bassal, T. T., Yousef, H. A., Dorrah, M. A., Mohamed, A. A., Duvic, B. J. Insect Sci. 2015, 15, 57; https://doi.org/10.1093/jisesa/iev038.Suche in Google Scholar PubMed PubMed Central

45. Köse, K., Erol, K., Köse, D. A. Adsorption 2020, 26, 329–337, https://doi.org/10.1007%2Fs10450-020-00212-9.10.1007/s10450-020-00212-9Suche in Google Scholar

46. Harrison, M. J., Burton, N. A., Hillier, I. H. J. Am. Chem. Soc. 1997, 119, 12285–12291; https://doi.org/10.1021/ja9711472.Suche in Google Scholar

47. Park, J. M., Kim, M., Park, H.-S., Jang, A., Min, J., Kim, Y. H. Int. J. Biol. Macromol. 2013, 54, 37–43; https://doi.org/10.1016/j.ijbiomac.2012.11.025.Suche in Google Scholar PubMed

48. Yılmaz, F., Bereli, N., Yavuz, H., Denizli, A. Biochem. Eng. J. 2009, 43, 272–279.10.1016/j.bej.2008.10.009Suche in Google Scholar

49. Xue, F., Chen, Q., Li, Y., Liu, E., Li, D. Enzym. Microb. Technol. 2019, 131, 109425; https://doi.org/10.1016/j.enzmictec.2019.109425.Suche in Google Scholar PubMed

50. Lian, Z. X., Ma, Z. S., Wei, J., Liu, H. Process Biochem. 2012, 47, 201–208; https://doi.org/10.1016/j.procbio.2011.10.031.Suche in Google Scholar

51. Deng, Y., Li, J., Pu, Y., Chen, Y., Zhao, J., Tang, J. React. Funct. Polym. 2016, 103, 92–98; https://doi.org/10.1016/j.reactfunctpolym.2016.04.007.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0191).


Received: 2020-07-22
Accepted: 2020-10-29
Published Online: 2020-12-16
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0191/html?lang=de
Button zum nach oben scrollen