Abstract
A PPY/TiO2/PPY jacket nanotube array was fabricated by coating PPY layer on the external and internal surface of a tube wall-separated TiO2 nanotube array. It shows coaxial triple-walled nanotube structure with two PPY nanotube layers sandwiching one TiO2 nanotube layer. PPY/TiO2/PPY reveals much higher current response than TiO2. The theoretical calculation indicates PPY/TiO2/PPY reveals higher density of states and lower band gap, accordingly presenting higher conductivity and electroactivity, which is consistent with the experimental result of a higher current response. The electroactivity is highly enhanced in H2SO4 rather than Na2SO4 electrolyte due to feasible pronation process of PPY in an acidic solution. PPY/TiO2/PPY could conduct the redox reaction in H2SO4 electrolyte which involves the reversible protonation/deprotonation and HSO4− doping/dedoping process and accordingly contributes to Faradaic pseudocapacitance. The specific capacitance is highly enhanced from 1.7 mF cm−2 of TiO2 to 123.4 mF cm−2 of PPY/TiO2/PPY at 0.1 mA cm−2 in H2SO4 electrolyte. The capacitance also declines from 123.4 to 31.7 mF cm−2 when the current density increases from 0.1 to 1 mA cm−2, presenting the rate capacitance retention of 26.7% due to the semiconductivity of TiO2. A PPY/TiO2/PPY jacket nanotube with high charge storage capacitance is regarded as a promising supercapacitor electrode material.
Funding source: Fundamental Research Funds for the Central Universities
Award Identifier / Grant number: 2242018K41024
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The work was supported by the Fundamental Research Funds for the Central Universities (2242018K41024) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. González, A., Goikolea, E., Barrena, J. A., Mysyk, R. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249.Search in Google Scholar
2. Xie, Y. J. Electrochem. En. Conv. Stor. 2021, 18, 031007. https://doi.org/10.1115/1.4048937.Search in Google Scholar
3. Li, P., Ruan, C., Xu, J., Xie, Y. Nanoscale 2019, 11, 13639–13649. https://doi.org/10.1039/c9nr03784e.Search in Google Scholar PubMed
4. Xu, J., Ruan, C., Li, P., Xie, Y. Chem. Eng. J. 2019, 378, 14. https://doi.org/10.1016/j.cej.2019.122064.Search in Google Scholar
5. Xie, Y., Zhou, Y. J. Mater. Res. 2019, 34, 2472–2481. https://doi.org/10.1557/jmr.2019.224.Search in Google Scholar
6. Lu, L., Xie, Y. J. Mater. Sci. 2019, 54, 4842–4858. https://doi.org/10.1007/s10853-018-03185-x.Search in Google Scholar
7. Xu, J., Ruan, C., Li, P., Mu, Y., Xie, Y. Electrochim. Acta 2020, 340, 135950. https://doi.org/10.1016/j.electacta.2020.135950.Search in Google Scholar
8. Wang, Y., Xie, Y. J. Alloys Compd. 2020, 824, 153936. https://doi.org/10.1016/j.jallcom.2020.153936.Search in Google Scholar
9. Li, P., Ruan, C., Xu, J., Xie, Y. Electrochim. Acta 2020, 330, 135334. https://doi.org/10.1016/j.electacta.2019.135334.Search in Google Scholar
10. Li, X., Zhitomirsky, I. J. Power Sources 2013, 221, 49–56. https://doi.org/10.1016/j.jpowsour.2012.08.017.Search in Google Scholar
11. Xie, Y. Chem. Rec. 2019, 19, 1370–1384.10.1002/tcr.201800192Search in Google Scholar
12. Du, H., Xie, Y., Xia, C., Wang, W., Tian, F., Zhou, Y. Mater. Lett. 2014, 132, 417–420. https://doi.org/10.1016/j.matlet.2014.06.140.Search in Google Scholar
13. Xie, Y., Wang, Y. Electrochim. Acta 2020, 364, 137224. https://doi.org/10.1016/j.electacta.2020.137224.Search in Google Scholar
14. Zhou, Z., Yang, Y., Han, Y., Guo, Q., Zhang, X., Lu, C. Carbohydr. Polym. 2017, 177, 241–248. https://doi.org/10.1016/j.carbpol.2017.08.136.Search in Google Scholar PubMed
15. Zhang, X., Cao, J., Yang, Y., Wu, X., Zheng, Z., Zhang, X. Chem. Eng. J. 2019, 374, 730–737. https://doi.org/10.1016/j.cej.2019.05.211.Search in Google Scholar
16. Li, P., Ruan, C., Xu, J., Xie, Y. J. Alloys Compd. 2019, 791, 152–165. https://doi.org/10.1016/j.jallcom.2019.03.274.Search in Google Scholar
17. Ruan, C., Xie, Y. RSC Adv. 2020, 10, 37631–37643. https://doi.org/10.1039/d0ra06724e.Search in Google Scholar PubMed PubMed Central
18. Afzal, A., Abuilaiwi, F. A., Habib, A., Awais, M., Waje, S. B., Atieh, M. A. J. Power Sources 2017, 352, 174–186. https://doi.org/10.1016/j.jpowsour.2017.03.128.Search in Google Scholar
19. Ruan, C., Li, P., Xu, J., Xie, Y. Prog. Org. Coating 2020, 139, 105455. https://doi.org/10.1016/j.porgcoat.2019.105455.Search in Google Scholar
20. Ruan, C., Li, P., Xu, J., Chen, Y., Xie, Y. Inorg. Chem. Front. 2019, 6, 3583–3597. https://doi.org/10.1039/c9qi01028a.Search in Google Scholar
21. Ansari, R., Mahmoudinezhad, E., Motevalli, B. J. Vib. Contr. 2014, 20, 773–785. https://doi.org/10.1177/1077546312455679.Search in Google Scholar
22. Karaca, E., Gökcen, D., Pekmez, N. Ö., Pekmez, K. Electrochim. Acta 2019, 305, 502–513. https://doi.org/10.1016/j.electacta.2019.03.060.Search in Google Scholar
23. Xie, Y. Nano 2020, 15, 2050152. https://doi.org/10.1142/S1793292020501520.Search in Google Scholar
24. Sowmiya, G., Velraj, G. J. Mater. Sci. Mater. Electron. 2020, 31, 14287–14294. https://doi.org/10.1007/s10854-020-03985-5.Search in Google Scholar
25. Xie, Y., Du, H. J. Solid State Electrochem. 2012, 16, 2683–2689. https://doi.org/10.1007/s10008-012-1696-5.Search in Google Scholar
26. Xie, Y. J. Nano. Res. 2020, 65, 1–12. https://doi.org/10.4028/www.scientific.net/JNanoR.65.1.Search in Google Scholar
27. Xie, Y., Yao, C. Mater. Res. Express 2019, 6, 125550. https://doi.org/10.1088/2053-1591/ab69c9.Search in Google Scholar
28. Jiang, L., Luo, D., Zhang, Q., Ma, S., Wan, G., Lu, X., Ren, Z. Chem. Eur. J. 2019, 25, 7903–7911. https://doi.org/10.1002/chem.201900399.Search in Google Scholar PubMed
29. Chang, W.-T., Hsueh, Y.-C., Huang, S.-H., Liu, K.-I., Kei, C.-C., Perng, T.-P. J. Mater. Chem. A 2013, 1, 1987–1991. https://doi.org/10.1039/c2ta00806h.Search in Google Scholar
30. Kuvarega, A. T., Mamba, B. B. J. Nanomater. 2016, 2016, 1–9. https://doi.org/10.1155/2016/3746861.Search in Google Scholar
31. Wang, Z.-L., Guo, R., Ding, L.-X., Tong, Y.-X., Li, G.-R. Sci. Rep. 2013, 3, 1204. https://doi.org/10.1038/srep01204.Search in Google Scholar PubMed PubMed Central
32. Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., Kimura, S. Sci. Rep. 2020, 10, 1–14. https://doi.org/10.1038/s41598-020-57794-1.Search in Google Scholar PubMed PubMed Central
33. Kulandaivalu, S., Suhaimi, N., Sulaiman, Y. Sci. Rep. 2019, 9, 1–10. https://doi.org/10.1038/s41598-019-41203-3.Search in Google Scholar PubMed PubMed Central
34. Xie, Y., Zhang, Y. J. Solid State Electrochem. 2019, 23, 1911–1927. https://doi.org/10.1007/s10008-019-04260-2.Search in Google Scholar
35. Chen, Y., Xie, Y. Adv. Electron. Mater. 2019, 5, 1900816. https://doi.org/10.1002/aelm.201900816.Search in Google Scholar
36. Mu, Y., Xie, Y. J. Phys. Chem. C 2019, 123, 18232–18239. https://doi.org/10.1021/acs.jpcc.9b04550.Search in Google Scholar
37. Mu, Y., Ruan, C., Li, P., Xu, J., Xie, Y. Electrochim. Acta 2020, 338, 135881. https://doi.org/10.1016/j.electacta.2020.135881.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Thermoelastic characterization of carbon nanotube reinforced PDMS elastomer
- Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends
- The effects of morphological variation and polymer/polymer interface on the tensile modulus of binary polymer blends: a modeling approach
- Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite
- Preparation and assembly
- Elaboration and characterization of multilayer polymeric membranes: effect of the chemical nature of polymers
- Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array
- Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization
- Engineering and processing
- Influence of low-fracture-fiber mechanism on fiber/melt-flow behavior and tensile properties of ultra-long-glass-fiber-reinforced polypropylene composites injection molding
- Bilayer PMMA antireflective coatings via microphase separation and MAPLE
Articles in the same Issue
- Frontmatter
- Material properties
- Thermoelastic characterization of carbon nanotube reinforced PDMS elastomer
- Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends
- The effects of morphological variation and polymer/polymer interface on the tensile modulus of binary polymer blends: a modeling approach
- Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite
- Preparation and assembly
- Elaboration and characterization of multilayer polymeric membranes: effect of the chemical nature of polymers
- Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array
- Antimicrobial magnetic poly(GMA) microparticles: synthesis, characterization and lysozyme immobilization
- Engineering and processing
- Influence of low-fracture-fiber mechanism on fiber/melt-flow behavior and tensile properties of ultra-long-glass-fiber-reinforced polypropylene composites injection molding
- Bilayer PMMA antireflective coatings via microphase separation and MAPLE