Home Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite
Article
Licensed
Unlicensed Requires Authentication

Effect of gamma radiation on the structural, thermal and optical properties of PMMA/Sn0.75Fe0.25S2 nanocomposite

  • Ali A. Alhazime , Nesreen T. El-Shamy , Kaoutar Benthami ORCID logo , Mai ME. Barakat and Samir A. Nouh ORCID logo EMAIL logo
Published/Copyright: December 17, 2020
Become an author with De Gruyter Brill

Abstract

Nanocomposite films of polymethylmethacrylate PMMA with Sn0.75Fe0.25S2 nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Changes in PMMA/Sn0.75Fe0.25S2 nanocomposite (NCP) due to gamma irradiation have been measured. XRD results indicate that the gamma doses of 10–80 kGy cause intermolecular crosslinking that reduces the ordered portion in the NPs. Bonding between the NPs and the host PMMA was confirmed by FTIR. TGA results indicate an enhancement in thermal stability in the NCP films irradiated with doses 20–80 kGy. The optical band gap was reduced from 3.23 to 2.47 eV upon gamma irradiation up to 80 kGy due bonding between the NPs and PMMA which enhanced the amorphous part of the NPs. Finally, the color variation between the blank and irradiated films (ΔE) was determined. Color changes immensely when the PMMA/Sn0.75Fe0.25S2 NCP films are gamma irradiated. Values of ΔE were as much as 31.6 which is an acceptable match in commercial reproduction on printing presses.


Corresponding author: Samir A. Nouh, Physics Department, Faculty of Science, Taibah University, Al-Madina al Munawarah, Saudi Arabia; and Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566Cairo, Egypt, E-mail:

Acknowledgements

The authors appreciatively acknowledge the support of Dr. M. H. AbdelKader in providing the blank material used in this study.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no potential conflicts of interest.

References

1. Gurunathan, K., Vadivel Murugan, A., Marimuthu, R., Mulik, U. P., Amalnerkar, D. P. Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater. Chem. Phys. 1999, 61, 173–191. https://doi.org/10.1016/s0254-0584(99)00081-4.Search in Google Scholar

2. Kurt, A. Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films. Turk. J. Chem. 2010, 34, 67–79.10.3906/kim-0903-29Search in Google Scholar

3. Kumar, M., Arun, S., Upadhyaya, P., Pugazhenthi, G. Properties of PMMA/clay nanocomposites prepared using various compatibilizers. Int. J. Mech. Mater. Eng. 2015, 10, 1–9; https://doi.org/10.1186/s40712-015-0035-x.Search in Google Scholar

4. Khaled, S. M., Sui, R., Charpentier, P. A., Rizkalla, A. S. Synthesis of TiO2-PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir 2007, 23, 3988–3995; https://doi.org/10.1021/la062879n.Search in Google Scholar PubMed

5. Xiao, W., Wang, Z., Zhang, Y., Fang, R., Yuan, Z., Miao, C., Yan, X., Jiang, Y. Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J. Power Sources 2018, 382, 128–134; https://doi.org/10.1016/j.jpowsour.2018.02.012.Search in Google Scholar

6. Lyutakov, O., Goncharova, I., Rimpelova, S., Kolarova, K., Svanda, J., Svorcik, V. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes. Mater. Sci. Eng. C 2015, 49, 534–540; https://doi.org/10.1016/j.msec.2015.01.022.Search in Google Scholar PubMed

7. Cao, J., Wang, L., Shang, Y., Fang, M., Deng, L., Gao, J., Li, J., Chen, H., He, X. Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 2013, 111, 674–679; https://doi.org/10.1016/j.electacta.2013.08.048.Search in Google Scholar

8. Pan, W., Zhang, H., Chen, Y. Electrical and mechanical properties of PMMA/nano-ATO composites. J. Mater. Sci. Technol. 2009, 25, 247–250.Search in Google Scholar

9. Tabanli, S., Bilir, G., Eryurek, G. Color tunable up-conversion emission from Er3+: Y2O3 nanoparticles embedded in PMMA matrix. J. Lumin. 2017, 182, 146–153; https://doi.org/10.1016/j.jlumin.2016.10.009.Search in Google Scholar

10. Khursheed, S., Biswas, P., Singh, V. K., Kumar, V., Swart, H. C., Sharma, J. Vacuum 2019, 159, 414–422; https://doi.org/10.1016/j.vacuum.2018.10.069.Search in Google Scholar

11. Deep, N., Mishra, P. Synthesis and optical studies of KCaVO4: Sm3+/PMMA nanocomposites. Mater. Today Proc 2018, 5, 28328–28336; https://doi.org/10.1016/j.matpr.2018.10.117.Search in Google Scholar

12. Hu, Y. H., Chen, C. Y., Wang, C. C. Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym. Degrad. Stabil. 2004, 84, 545–553; https://doi.org/10.1016/j.polymdegradstab.2004.02.001.Search in Google Scholar

13. Baskaran, R., Selvasekarapandian, S., Kuwata, N., Kawamura, J., Hattori, T. Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 2006, 177, 2679–2682; https://doi.org/10.1016/j.ssi.2006.04.013.Search in Google Scholar

14. Silva, M. M., Barros, S. C., Smith, M. J., Callum, J. R. M. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta 2004, 49, 1887–1891; https://doi.org/10.1016/j.electacta.2003.12.017.Search in Google Scholar

15. Chiodelli, G., Ferloni, P., Magistris, A., Sanesi, M. Ionic conduction and thermal properties of poly (ethylene oxide)-lithium tetrafluoroborate films. Solid State lonics 1988, 28, 1009–1013; https://doi.org/10.1016/0167-2738(88)90321-9.Search in Google Scholar

16. Nouh, S. A., Abou Elfadl, A., Benthami, K., Alhazime Ali, A. Structural and optical characteristics of laser irradiated CdSe/PVA nanocomposites. Int. Polym. Process. 2019, 34, 255–261; https://doi.org/10.3139/217.3729.Search in Google Scholar

17. Nouh, S. A., Benthami, K. Gamma induced changes in the structure and optical properties of ZnS/PVA nanocomposite. J. Vinyl Addit. Technol. 2019, 25, 271–277; https://doi.org/10.1002/vnl.21689.Search in Google Scholar

18. Bissessur, R., Schipper, D. Exfoliation and reconstruction of SnS2 layers: a synthetic route for the preparation of polymer-SnS2 nanomaterials. Mater. Lett. 2008, 62, 1638–1641; https://doi.org/10.1016/j.matlet.2007.09.049.Search in Google Scholar

19. Nouh, S. A., Gaballah, N., Abou Elfadl, A., Alsharif, S. A. Modification induced by proton irradiation in Bayfol UV1 7-2 nuclear track detector‏. Radiat. Protect. Dosim. 2019, 183, 450–459; https://doi.org/10.1093/rpd/ncy165.Search in Google Scholar PubMed

20. Ocak, Y. S., Kılıçoğlu, T., Topal, G., Başkan, M. H. 60Co-İrradiation effects on electrical properties of a rectifying diode based on a novel macrocyclic Zn octaamide complex. Nucl. Instrum. Methods Phys. Res. 2010, 612, 360–366; https://doi.org/10.1016/j.nima.2009.11.008.Search in Google Scholar

21. Nouh, S. A., Radwan, Y. E., El fiky, D., Abutalib, M. M., Bahareth, R. A., Hegazy, T. M., Fouad, S. S. Structure, thermal, optical and electrical investigation of the effect of heavy highly energetic ions irradiations in Bayfol DPF 5023 nuclear track detector. Radiat. Phys. Chem. 2014, 97, 68–74; https://doi.org/10.1016/j.radphyschem.2013.10.017.Search in Google Scholar

22. Alhazime, A., Benthami, K., Alsobhi, B., Ghareib, W., Nouh, S. A. Pani‐Ag/PVA nanocomposite: gamma induced changes in the thermal and optical characteristics. J. Vinyl Addit. Technol. 2020, https://doi.org/10.1002/vnl.21782.Search in Google Scholar

23. Nouh, S. A., Benthami, K., Barakat, M. M. E. Gamma-induced changes in the optical and structural properties of palladium/polycarbonate nanocomposite membrane. Radiat. Eff. Defect Solid 2020, 175, 41–53; https://doi.org/10.1080/10420150.2020.1718130.Search in Google Scholar

24. Elhalawany, N., Wassel, A. R., Abdelhamid, A. E., AbouElfadl, A., Nouh, S. A. Novel hyper branched polyaniline nanocomposites for gamma radiation dosimetry. J. Mater. Sci. Mater. Electron. 2020, 31, 5914–5925; https://doi.org/10.1007/s10854-020-02884-z.Search in Google Scholar

25. Abdel-Kader, M. H., Mohamed, M. B. Exploring the direct effect of intermediate band semiconductor materials on the structural, thermal and optical properties of PMMA nanocomposite. Appl. Phys. A 2020, 126, 89–100; https://doi.org/10.1007/s00339-019-3244-y.Search in Google Scholar

26. Ryan, A. J., Bras, W., Mant, G. R., Derbyshire, G. E. A direct method to determine the degree of crystallinity and lamellar thickness of polymers: application to polyethylene. Polymer 1994, 35, 4537–4544; https://doi.org/10.1016/0032-3861(94)90799-4.Search in Google Scholar

27. Ramrakhiani, M., Parashar, P., Datt, S. C. Study of the degree of crystallinity in eudragit/poly(methyl methacrylate) polyblends by X-ray diffraction. J. Appl. Polym. Sci. 2005, 96, 1835–1838; https://doi.org/10.1002/app.21105.Search in Google Scholar

28. Albuquerque, M. C. C., Garcia, O. P., Aquino, K. A. S., Araujo, P. L. B., Araujo, E. S. Stibnite nanoparticles as a new stabilizer for poly (methyl methacrylate) exposed to gamma irradiation. Mater. Res. 2015, 18, 978–983; https://doi.org/10.1590/1516-1439.000814.Search in Google Scholar

29. Liu, S., Ye, H., Zhou, Y., He, J., Jiang, Z., Zhao, J., Huang, X. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FT-IR. Polym. Degrad. Stabil. 2006, 91, 1808–1814; https://doi.org/10.1016/j.polymdegradstab.2005.11.013.Search in Google Scholar

30. Kaniappan, K., Latha, S. Certain investigations on the formulation and characterization of polystyrene/poly(methyl methacrylate) blends. Int. J. Chemtechnol. Res. 2011, 3, 708–715.Search in Google Scholar

31. Al-Kadhemy, M. F. H., Abaas, W. H. Optical properties of crystal violet doped PMMA films. Res. Rev. Polym. 2013, 4, 45–51.Search in Google Scholar

32. Pauleau, Y. Materials Surface Processing by Directed Energy Techniques; Elsevier: New York, 2006.10.1016/B978-008044496-3/50000-9Search in Google Scholar

33. Antić, Ž., Krsmanović, R., Cincović, M. M., Dramićanin, M. D. Gd2O3:Eu3+/PMMA composite: thermal and luminescence properties. Acta Phys. Pol. 2010, 117, 831–836.10.12693/APhysPolA.117.831Search in Google Scholar

34. Alghunaim, N. S. Spectroscopic analysis of PMMA/PVC blends containing CoCl2. Results Phys. 2015, 5, 331–336; https://doi.org/10.1016/j.rinp.2015.11.003.Search in Google Scholar

35. Roy, H. S., Mollah, M. Y., Islam, M. M., Susan, M. A. Poly (vinyl alcohol)–MnO2 nanocomposite films as UV-shielding materials. Polym. Bull. 2018, 75, 5629–5643; https://doi.org/10.1007/s00289-018-2355-5.Search in Google Scholar

36. Abdullah, O. G., Aziz, S. B., Rasheed, M. A. Effect of silicon powder on the optical characterization of Poly(methyl methacrylate) polymer composites. J. Mater. Sci. Mater. Electron. 2017, 28, 4513–4520; https://doi.org/10.1007/s10854-016-6086-9.Search in Google Scholar

37. Mergen, O. B., Arda, E., Kara, S., Pekcan, O. Effects of GNP addition on optical properties and band gap energies of PMMA films. Polym. Compos. 2019, 40, 1862–1869; https://doi.org/10.1002/pc.24948.Search in Google Scholar

38. Karnati, P., Haque, A., Taufique, M. F. N., Ghosh, K. A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique. Nanomaterials 2018, 8, 62; https://doi.org/10.3390/nano8020062.Search in Google Scholar PubMed PubMed Central

39. Moynihan, H. R. Density, infrared absorption, and crystallinity in 66 and 610 nylons. J. Polym. Sci. 1956, 22, 363–368.10.1002/pol.1956.1202210202Search in Google Scholar

40. Tauc, J. In The Optical Properties of Solid; Abeles, A., Ed.; North Holland: Amsterdam, New York, 1972; p. 277.Search in Google Scholar

41. Elliott, S. In The Physics and Chemistry of Solids; Wiley: New York, 1998.Search in Google Scholar

42. Nassau, K. Color for Science Art and Technology; Elsevier: New York, 1998.Search in Google Scholar

43. Venkatram, N., NarayanaRao, D., Akundi, M. A. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. Optic Express 2005, 13, 867–872. https://doi.org/10.1364/opex.13.000867.Search in Google Scholar PubMed

44. Witzel, R. F., Burnham, R. W., Onley, J. W. Threshold and suprathreshold perceptual color differences. J. Opt. Soc. Am. 1973, 63, 615–625. https://doi.org/10.1364/josa.63.000615.Search in Google Scholar PubMed

45. Wyszecki, G., Fielder, G. H. New color-matching ellipses. J. Opt. Soc. Am. 1971, 61, 1135–1152. https://doi.org/10.1364/josa.61.001135.Search in Google Scholar PubMed

Received: 2020-07-27
Accepted: 2020-10-18
Published Online: 2020-12-17
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0197/html
Scroll to top button