Startseite Influence of low-fracture-fiber mechanism on fiber/melt-flow behavior and tensile properties of ultra-long-glass-fiber-reinforced polypropylene composites injection molding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of low-fracture-fiber mechanism on fiber/melt-flow behavior and tensile properties of ultra-long-glass-fiber-reinforced polypropylene composites injection molding

  • Po-Wei Huang , Hsin-Shu Peng EMAIL logo , Sheng-Jye Hwang und Chao-Tsai Huang ORCID logo
Veröffentlicht/Copyright: 19. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, an injection molding machine with a low-fracture-fiber mechanism was designed with three stages: a plasticizing stage, an injection stage, and a packing stage. The fiber-fracture behavior is observed under the screw (plasticizing stage) of low-compression/shear ratio for the ultra-long fiber during the molding process. The molding material employed in this study was 25-mm-ultra-long-glass-fiber-reinforced polypropylene (PP/U-LGF). In addition, a thickness of 3 mm and a width of 12 mm spiral-flow-mold were constructed for studying the melt flow length and flow-length ratio through an experiment. The experimental results showed that the use of an injection molding machine with a three-stage mechanism decreased the fiber length when the screw speed was increased. On average, each fiber was shortened by 50% (>15 mm on average) from its original length of 25 mm. Longer glass fibers were more resistant to melt filling, and as the fiber length was reduced, the mixing between the melt and glass fibers was improved. Thus, the melt fluidity and fiber ratios were increased. In addition, the mixing/flow direction of the melt had an impact on the dispersion and arrangement of glass fibers, thus the tensile strength of PP/U-LGF increased.


Corresponding author: Hsin-Shu Peng, Mechanical and Computer Aided Engineering, Feng Chia University College of Engineering and Science, Taichung40724, Taiwan, E-mail:

Funding source: Ministry of Science and Technology of Taiwan, R.O.C.

Award Identifier / Grant number: MOST 107-2622-E-006 -024 -CC1

Acknowledgments

The authors would like to thank Mr. Jia-Hao Chu for providing numerical simulation results of the fiber orientation. Besides that, the authors would also like to thank Chuan-Lih-Fa Machinery Works Co. Ltd. for the construction of an ultra-long/low-fracture-fiber injection molding machine.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank Ministry of Science and Technology of Taiwan, R.O.C. (project number: MOST 107-2622-E-006 -024 -CC1) for partly financing this research.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Heywood, J., Kenzie, D. M. Massachusetts Institute of Technology, MIT Energy Initiative Report, 2015.Suche in Google Scholar

2. Bandivadekar, A., Bodek, K., Cheah, L., Evans, C., Groode, T., Heywood, J., Kasseris, E., Kromer, M., Weiss, M. Massachusetts Institute of Technology Report. No. LFEE 2008-05.Suche in Google Scholar

3. Berketis, K., Tzetzis, D. J. Mater. Sci. 2009, 44, 3578–3588.10.1007/s10853-009-3485-9Suche in Google Scholar

4. Batista, M. D. R., Drzal, L. T., Kiziltas, A., Mielewski, D. Polym. Compos. 2019, 41, 1074–1089.10.1002/pc.25439Suche in Google Scholar

5. Kiziltas, E. E., Kiziltas, A., Lee, E. C. Polym. Compos. 2017, 39, 3556–3563.10.1002/pc.24376Suche in Google Scholar

6. Jan, T., Sebastian, G., Tim, O. In ANTEC, Conf. Proc. Anaheim, 2017, p. 63.Suche in Google Scholar

7. Ranganathan, N., Oksman, K., Nayak, S. K., Sain, M. Polym. Adv. Technol. 2016, 27, 685–692.10.1002/pat.3742Suche in Google Scholar

8. Truckenmuller, F., Fritz, H. G. Polym. Eng. Sci. 1991, 31, 1316–1329.10.1002/pen.760311806Suche in Google Scholar

9. Rohde-Tibitanzl, M. Direct Processing of Long Fiber-reinforced Polymer Composites and their Mechanical Behavior Under Static and Dynamic Load. Hanser Publications: Munich, 2015. ISBN: 978-1-56990-629-3978-1-56990-630-9.Suche in Google Scholar

10. Zeng, D., Lu, L., Zhou, J., Li, Y. SAE Technical Papers 2015, 01, 0698.Suche in Google Scholar

11. Sun, Z. Y., Han, H. S., Dai, G. C. J. Reinf. Plast. Compos. 2010, 29, 637–650.10.1177/0731684408100264Suche in Google Scholar

12. Thomason, J. L. Compos. Part A Appl. Sci. Manuf. 2007, 38, 210–216.10.1016/j.compositesa.2006.01.007Suche in Google Scholar

13. Hou, X. Q., Chen, X. Y., Liu, B. C., Chen, S. C., Li, H. M., Cao, W. Polym. Eng. Sci. 2019, 60, 13–21.10.1002/pen.25254Suche in Google Scholar

14. Kiziltas, A. In SPE Automotive Composites Conference & Exhibition. Detroit, US, 2017.Suche in Google Scholar

15. Kiziltas, A. In SPE Automotive Composites Conference & Exhibition. Detroit, US, 2015.Suche in Google Scholar

16. Silverman, E. M. Polym. Compos. 1987, 8, 8–15.10.1002/pc.750080103Suche in Google Scholar

17. Karger-Kocsis, J. Polypropylene Structure, Blends and Composites: Volume 3 Composites. Chapman and Hall: London, 1995. ISBN: 978-94-010-4233-8978-94-011-0523-1.Suche in Google Scholar

18. Dai, X. Y., Bates, P. J. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1159–1166.10.1016/j.compositesa.2008.03.013Suche in Google Scholar

19. Grizzo, L. H., Hage, E. Polim. Cienc. Tecnol. 2001, 21, 369–375.10.1590/S0104-14282011005000065Suche in Google Scholar

20. Toll, S., Andersson, P. O. Polym. Compos. 1993, 14, 116–125.10.1002/pc.750140205Suche in Google Scholar

21. Goris, S., Gandhi, U., Song, Y. Y., Oswald, T. A. In ANTEC, Conf. Proc. Indianapolis, 2016, p. 62.Suche in Google Scholar

22. Tseng, H. C., Wang, T. C., Chang, Y. J., Chang, R. Y. In ANTEC, Conf. Proc. Nevada, 2014, p. 60.Suche in Google Scholar

23. Lafranche, E., Krawczak, P. In ESAFORM Conference on Material Forming. Glasgow, UK, 2006.Suche in Google Scholar

24. Scantamburlo, A., Gazzola, L., Sorgato, M., Lucchetta, G. In AIP Conference Proceedings; https://doi.org/10.1063/1.5034827.Suche in Google Scholar

25. Tseng, H. C., Chang, R. Y., Hsu, C. H. J. Rheol. 2013, 57, 1597–1631.10.1122/1.4821038Suche in Google Scholar

26. Tseng, H. C., Chang, R. Y., Hsu, C. H. U.S. Patent, 2013. 8571828.Suche in Google Scholar

27. Goris, S., Osswald, T. Plast. Eng. 2017, 73, 46–47.10.1002/j.1941-9635.2017.tb01641.xSuche in Google Scholar

28. Güldaş, A., Uluer, O., Özdemir, A. Polym. Plast. Technol. Eng. 2009, 48, 389–396.10.1080/03602550902725399Suche in Google Scholar

29. Park, K. Polym. Plast. Technol. Eng. 2007, 43, 1569–1585.10.1081/PPT-200030276Suche in Google Scholar

30. Benitez-Rangel, J. P., Domínguez-González, A., Herrera-Ruiz, G., Delgado-Rosas, M. Polym. Plast. Technol. Eng. 2007, 46, 721–727.10.1080/15583720701271641Suche in Google Scholar

31. Huang, C. T., Chu, J. H., Fu, W. W., Hsu, C., Hwang, S. J. Int. J. Pr. Eng. Man-GT; https://doi.org/10.1007/s40684-020-00226-2.Suche in Google Scholar

Received: 2020-05-30
Accepted: 2020-10-08
Published Online: 2020-11-19
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0120/html?lang=de
Button zum nach oben scrollen