Startseite Naturwissenschaften Effects of structure and processing on the surface roughness of extruded co-continuous poly(ethylene) oxide/ethylene-vinyl acetate blends
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of structure and processing on the surface roughness of extruded co-continuous poly(ethylene) oxide/ethylene-vinyl acetate blends

  • Molin Guo , Hao Chen und João M. Maia ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Surface roughness and sharkskin of extruded polymers, including blends are affected by the morphology and processing conditions. In this study, different effects on the roughness of the polymer blend extrudates were investigated. Co-continuous poly(ethylene) oxide/ethylene-vinyl acetate (PEO/EVA) blends with three different molecular weight (Mw) PEOs were compounded successfully. It was found that the better co-continuity of the structure and smoother surface were achieved for lower Mw PEO/EVA blend because of more effective stress transfer in the PEO phase. The effect of processing temperature was also studied with decreasing processing temperature reducing the surface roughness of the high Mw PEO/EVA blend, which was also achieved as a result of improved co-continuous morphology by adjusting the viscosity and elasticity ratio with shifting temperatures.

Acknowledgments

The authors acknowledge Dow Chemical and Dupont for providing PEO and EVA samples.

  1. Conflict of interest statement: The authors declare to have no conflict of interests.

References

[1] Petrie CJS, Denn MM. AIChE J. 1976, 22, 209–236.10.1002/aic.690220202Suche in Google Scholar

[2] Denn MM. Annu. Rev. Fluid Mech. 1990, 22, 13–32.10.1146/annurev.fl.22.010190.000305Suche in Google Scholar

[3] Larson RG. Rheol. Acta. 1992, 31, 213–263.10.1007/BF00366504Suche in Google Scholar

[4] Tordella JP. In Rheology, Eirich FR, Ed., Academic Press: New York, 1969, p. 57–92.10.1016/B978-1-4832-2942-3.50008-9Suche in Google Scholar

[5] Wang S-Q. Molecular Transitions and Dynamics at Polymer/Wall Interfaces: Origins of Flow Instabilities and Wall Slip, Springer: Berlin, 1999, p. 227–275.10.1007/3-540-69711-X_6Suche in Google Scholar

[6] Benbow JJ, Lamb P. Polym. Eng. Sci. 1963, 3, 7–17.10.1002/pen.760030104Suche in Google Scholar

[7] Moynihan RH, Baird DG, Ramanathan RJ. J. Nonnewton. Fluid Mech. 1990, 36, 255–263.10.1016/0377-0257(90)85012-NSuche in Google Scholar

[8] Cogswell FN. J. Nonnewton. Fluid Mech. 1977, 2, 37–47.10.1016/0377-0257(77)80031-1Suche in Google Scholar

[9] Beaufils P, Vergnes B, Agassant JF. Int. Polym. Process. 1989, 4, 78–84.10.3139/217.890078Suche in Google Scholar

[10] Kissi NE, Piau JM. J. Rheol. (N. Y. N. Y.) 1994, 38, 1447–1463.10.1122/1.550552Suche in Google Scholar

[11] Rutgers R, Mackley M. J. Rheol. (N. Y. N. Y.) 2000, 44, 1319–1334.10.1122/1.1319176Suche in Google Scholar

[12] Ramamurthy AV. J. Rheol. (N. Y. N. Y.) 1986, 30, 337–357.10.1122/1.549852Suche in Google Scholar

[13] Tremblay B. J. Rheol. (N. Y. N. Y.) 1991, 35, 985–998.10.1122/1.550177Suche in Google Scholar

[14] Stewart CW. J. Rheol. (N. Y. N. Y.) 1993, 37, 499–513.10.1122/1.550456Suche in Google Scholar

[15] Piau J-M, Kissi NE, Toussaint F, Mezghani A. Rheol. Acta 1995, 34, 40–57.10.1007/BF00396053Suche in Google Scholar

[16] Hatzikiriakos SG, Dealy JM. Int. Polym. Process. 1993, 8, 36–43.10.3139/217.930036Suche in Google Scholar

[17] Burghelea TI, Griess HJ, Münstedt H. J. Nonnewton. Fluid Mech. 2010, 165, 1093–1104.10.1016/j.jnnfm.2010.05.007Suche in Google Scholar

[18] Miller E, Lee SJ, Rothstein JP. Rheol. Acta 2006, 45, 943–950.10.1007/s00397-006-0086-2Suche in Google Scholar

[19] Krupa I, Luyt A. Polymer (Guildf) 2001, 42, 7285–7289.10.1016/S0032-3861(01)00172-0Suche in Google Scholar

[20] Pötschke P, Paul DR, Po P. J. Macromol. Sci. Õ Part C-Polym. Rev. 2003, 43, 87–141.10.1081/MC-120018022Suche in Google Scholar

[21] Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof APH. Polymer (Guildf) 2000, 41, 1817–1826.10.1016/S0032-3861(99)00337-7Suche in Google Scholar

[22] Chen J, Cui X, Zhu Y, Jiang W, Sui K. Carbon N.Y. 2017, 114, 441–448.10.1016/j.carbon.2016.12.048Suche in Google Scholar

[23] Bai L, Sharma R, Cheng X, Macosko CW. Langmuir 2018, 34, 1073–1083.10.1021/acs.langmuir.7b03085Suche in Google Scholar

[24] Cao J-P, Zhao X, Zhao J, Zha J-W, Hu G-H, Dang Z-M. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924.10.1021/am401703mSuche in Google Scholar

[25] Polios IS, Soliman M, Lee C, Gido SP, Schmidt-Rohr K, Winter HH. Macromolecules 1997, 30, 4470–4480.10.1021/ma9701292Suche in Google Scholar

[26] Veenstra H, Hoogvliet RM, Norder B, De Boer AP. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 1795–1804.10.1002/(SICI)1099-0488(199808)36:11<1795::AID-POLB1>3.0.CO;2-QSuche in Google Scholar

[27] Veenstra H, Van Dam J, de Boer AP. Polymer (Guildf) 1999, 40, 1119–1130.10.1016/S0032-3861(98)00342-5Suche in Google Scholar

[28] Utracki LA. J. Rheol. (N. Y. N. Y.) 1991, 35, 1615–1637.10.1122/1.550248Suche in Google Scholar

[29] Steinmann S, Gronski W, Friedrich C. Polymer (Guildf) 2001, 42, 6619–6629.10.1016/S0032-3861(01)00100-8Suche in Google Scholar

[30] Willemse RC, de Boer AP, van Dam J, Gotsis AD. Polymer (Guildf) 1999, 40, 827–834.10.1016/S0032-3861(98)00307-3Suche in Google Scholar

[31] Willemse RC, de Boer AP, van Dam J, Gotsis AD. Polymer (Guildf) 1998, 39, 5879–5887.10.1016/S0032-3861(97)10200-2Suche in Google Scholar

[32] Grace HP. Chem. Eng. Commun. 1982, 14, 225–277.10.1080/00986448208911047Suche in Google Scholar

[33] Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R. Macromolecules 2002, 35, 8825–8830.10.1021/ma020890ySuche in Google Scholar

[34] Larson RG. The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering), Oxford University Press: New York, 1999, Vol. 86, p. 108.Suche in Google Scholar

[35] Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE. Fluid Mech. 1999, 80, 183–197.10.1016/S0377-0257(98)00086-XSuche in Google Scholar

[36] Barroso VC, Covas JA, Maia JM. Rheol. Acta. 2002, 41, 154–161.10.1007/s003970200014Suche in Google Scholar

[37] Barroso VC, Andrade RJ, Maia JM. J. Rheol. (N. Y. N. Y.) 2010, 54, 605–618.10.1122/1.3378791Suche in Google Scholar

[38] Andrade RJ, Harris P, Maia JM. J. Rheol. (N. Y. N. Y.) 2014, 58, 869–890.10.1122/1.4875349Suche in Google Scholar

[39] Barroso VC, Maia JM. Rheol. Acta 2002, 41, 257–264.10.1007/s003970100208Suche in Google Scholar

[40] Barroso VC, Ribeiro SP, Maia JM. Rheol. Acta 2003, 42, 345–354.10.1007/s00397-002-0284-5Suche in Google Scholar

[41] Münstedt H, Schwarzl FR. Deformation and Flow of Polymeric Materials, Springer: Berlin, 2014, p. 407.10.1007/978-3-642-55409-4Suche in Google Scholar

[42] Ruymbeke E, van Muliawan EB, Hatzikiriakos SG, Watanabe T, Hirao A. J. Rheol. 2010, 54, 643.10.1122/1.3368724Suche in Google Scholar

[43] Liu G, Sun H, Rangou S, Ntetsikas K, Avgeropoulos A, Wang SQ. J. Rheol. (N. Y. N. Y.) 2013, 57, 89–104.10.1122/1.4763568Suche in Google Scholar

[44] Barroso VC, Maia JM. Polym. Eng. Sci. 2005, 45, 984–997.10.1002/pen.20356Suche in Google Scholar

[45] Barroso VC, Maia JM. J. Nonnewton. Fluid Mech. 2005, 126, 93–103.10.1016/j.jnnfm.2004.03.012Suche in Google Scholar

[46] Andrade RJ, Maia JM. J. Rheol. (N. Y. N. Y.) 2011, 155, 925–937.10.1122/1.3596210Suche in Google Scholar

[47] Jameie OA, Razavi AMK, Rafeie OTA. J. Polym. Res. 2017, 24, 21.10.1007/s10965-017-1183-xSuche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2019-0238).


Received: 2019-07-18
Accepted: 2019-10-10
Published Online: 2019-11-22
Published in Print: 2020-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0238/html?lang=de
Button zum nach oben scrollen