Startseite Naturwissenschaften Oscillating shear capillary rheometry (OSCAR) for polymer melts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillating shear capillary rheometry (OSCAR) for polymer melts

  • Dario Nichetti ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Knowing the flow parameters of a polymer melt under steady state condition is required to assess the performance of the material in die and mold design. Often, however, this is not sufficient for a full understanding of the polymer processing behavior, and information on the linear and non-linear viscoelastic behavior is needed. In this paper, the non-linear viscoelastic behavior of a polymer under shear flow has been investigated by measuring the stress response when a cyclic oscillating shear rate in a capillary rheometer is applied. The time-dependent wall shear stress has been decomposed into in-phase viscous and elastic components. A model to interpret the experimental results is presented and applied to a well-characterized polystyrene and two polyethylenes with similar rheology but different molecular structure (HDPE and LLDPE). The relevant characteristics resulting from the model, such as the generalized elastic and viscous modulus under shear, are compared and discussed.

References

[1] Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric Liquids, vol 1., Wiley: New York, 1987.Suche in Google Scholar

[2] Han CD. Rheology and Processing of Polymeric Materials, Oxford University Press: New York, 2007.10.1093/oso/9780195187823.001.0001Suche in Google Scholar

[3] Xie F, Halley PJ, Avérous L. Prog. Polym. Sci. 2012, 37, 595–623.10.1016/j.progpolymsci.2011.07.002Suche in Google Scholar

[4] Housmans JW, Gahleitner MC, Peters GWM, Meijer HEH. Polymer 2009, 50, 2304–2319.10.1016/j.polymer.2009.02.050Suche in Google Scholar

[5] Carneiro OS, Maia JM. Polym. Composites 2000, 21, 960–969.10.1002/pc.10249Suche in Google Scholar

[6] Grizzuti N, Buonocore G, Iorio G. J. Rheol. 2000, 44, 149–164.10.1122/1.551073Suche in Google Scholar

[7] Thomas DP, Hagan RS. Polym. Eng. Sci. 1969, 9, 164–171.10.1002/pen.760090304Suche in Google Scholar

[8] Mitsoulis E, Delgadillo-Velazquez O, Hatzikiriakos SG. J. Non-Newton. Fluid Mech. 2007, 145, 102–108.10.1016/j.jnnfm.2007.05.004Suche in Google Scholar

[9] Shaw MT. Introduction to Polymer Rheology, Wiley: New York, 2012.10.1002/9781118170229Suche in Google Scholar

[10] Hatzikiriakos SG, Dealy JM. Polym. Eng. Sci. 1994, 34, 493.10.1002/pen.760340606Suche in Google Scholar

[11] Bagley EB. J. Appl. Phys. 1957, 28, 624–627.10.1063/1.1722814Suche in Google Scholar

[12] Mitsoulis E. J. Non-Newton. Fluid Mech. 1998, 78, 187–201.10.1016/S0377-0257(98)00073-1Suche in Google Scholar

[13] Keslerová R, Trdlička D, Řezníček H. J. Phys. Conf. Ser. 2016, 38, 12112.10.1088/1742-6596/738/1/012112Suche in Google Scholar

Received: 2019-07-19
Accepted: 2019-10-13
Published Online: 2019-11-12
Published in Print: 2020-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0231/html?lang=de
Button zum nach oben scrollen