Startseite Naturwissenschaften Processability predictions for mechanically recycled blends of linear polymers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Processability predictions for mechanically recycled blends of linear polymers

  • Janne van Gisbergen und Jaap den Doelder EMAIL logo
Veröffentlicht/Copyright: 17. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recycling of thermoplastic polymers is an important element of sustainable circular economy practices. The quality of mechanically recycled polymers is a concern. A method is presented to predict the structure and processability of recycled blends of polymers based on processability knowledge of their virgin precursor components. Blending rules at molecular weight distribution level are well established and form the foundation of the new method. Two essential fundamental building blocks are combined with this foundation. First, component and blend structure are related to viscosity via tube theories. Second, viscosity is related to melt flow index via a continuum mechanics approach. Emulator equations are built based on virtual experimental designs for fast forward and reverse calculations directly relating structure to viscosity and processability. The new combined method is compared with empirical blend rules, and shows important similarities and also clear quantitative differences. Finally, the new method is applied to practical recycling quality challenges.

References

[1] Trucost. Plastics and Sustainability, 2016.Suche in Google Scholar

[2] Ellen MacArthur Foundation. The New Plastics Economy. Rethinking the Future of Plastics, 2016.Suche in Google Scholar

[3] Al-Salem SM, Lettieri P, Baeyens J. Waste Manag. 2009, 29, 2625–2643.10.1016/j.wasman.2009.06.004Suche in Google Scholar PubMed

[4] Ghisellini P, Cialani C, Ulgiati S. J. Clean. Prod. 2016, 114, 11–32.10.1016/j.jclepro.2015.09.007Suche in Google Scholar

[5] Stahel WR. Nature, 2016, 531, 435–438.10.1038/531435aSuche in Google Scholar PubMed

[6] Plastics Europe. Plastics – the Facts, 2017.Suche in Google Scholar

[7] Merrington A. In Applied Plastics Engineering Handbook, Recycling of Plastics, 2nd ed., Kutz M, Ed., Elsevier: City, 2017, Ch 9.3.2.Suche in Google Scholar

[8] Macosko CW. Rheology Principles, Measurements, and Applications, VCH: New York, 1994.Suche in Google Scholar

[9] Koopmans R, Den Doelder J, Molenaar J. Polymer Melt Fracture, CRC Press: Boca Raton, 2010.10.1201/9781420018288Suche in Google Scholar

[10] Bremner T, Rudin A, Cook DG. J. Appl. Polym. Sci. 1990, 41, 1617–1627.10.1002/app.1990.070410721Suche in Google Scholar

[11] Abdel-Bary EM. Handbook of Plastic Films, Rapra: Shawbury, 2003.Suche in Google Scholar

[12] Bersted BH. J. Appl. Polym. Sci. 1975, 19, 2167–2177.10.1002/app.1975.070190810Suche in Google Scholar

[13] Ferry JD. Viscoelastic Properties of Polymers, 3rd, Wiley: New York, 1980.Suche in Google Scholar

[14] Mead DW. J. Rheol. 1994, 38, 1797–1827.10.1122/1.550527Suche in Google Scholar

[15] Milner SW. J. Rheol. 1996, 40, 303–315.10.1122/1.550742Suche in Google Scholar

[16] Carrot C, Guillet J. J. Rheol. 1997, 41, 1203–1220.10.1122/1.550815Suche in Google Scholar

[17] Steeman PAM. Rheol. Acta 1998, 37, 583–592.10.1007/s003970050145Suche in Google Scholar

[18] Nobile MR, Cocchini F. Rheol. Acta 2000, 39, 152–162.10.1007/s003970050015Suche in Google Scholar

[19] Leonardi F, Majeste JC, Allal A, Marin G. J. Rheol. 2000, 44, 675–692.10.1122/1.551108Suche in Google Scholar

[20] Guzman JD, Schieber JD, PollardR. Rheol. Acta 2005, 44, 342–351.10.1007/s00397-004-0414-3Suche in Google Scholar

[21] Den Doelder J. Rheol. Acta 2006, 46, 195–210.10.1007/s00397-006-0115-1Suche in Google Scholar

[22] Das C, Inkson NJ, Read DJ, Kelmanson MA, McLeish TCB. J. Rheol. 2006, 50, 207–234.10.1122/1.2167487Suche in Google Scholar

[23] Read DJ. J. Polym. Sci. B. Polym. Phys. 2015, 53, 123–141.10.1002/polb.23551Suche in Google Scholar

[24] Gloor WE. Polymer 1977, 19, 984–986.10.1016/0032-3861(78)90210-0Suche in Google Scholar

[25] Cross MM. J. Colloid Sci. 1965, 20, 417–437.10.1016/0095-8522(65)90022-XSuche in Google Scholar

[26] Bremner T, Cook DG, Rudin A. J. Appl. Polym. Sci. 1991, 43, 1773–1773.10.1002/app.1991.070430920Suche in Google Scholar

[27] Seavey KC, Liu YA, Khare NP, Bremner T, Chen CC. Ind. Eng. Chem. Res. 2003, 42, 5354–5362.10.1021/ie021003iSuche in Google Scholar

[28] Cottam BJ. J. Appl. Polym. Sci. 1965, 9, 1853–1862.10.1002/app.1965.070090519Suche in Google Scholar

[29] Bersted BH, Slee JD. J. Appl. Polym. Sci. 1977, 21, 2631–2644.10.1002/app.1977.070211006Suche in Google Scholar

[30] Product information found on internet sites of SABIC, Dow, ExxonMobil, LyondellBasell, Borealis, ChevronPhillips, INEOS, and NOVA. Accessed May 2018.Suche in Google Scholar

[31] Shenoy AV, Saini DR. Adv. Polym. Technol. 1986, 6, 1–58.10.1002/adv.1986.060060101Suche in Google Scholar

[32] Brouwer MT, Thoden van Velzen EU, Augustinus A, SoethoudtH, De Meester S, Ragaert K. Waste Manag. 2018, 71,62–85.10.1016/j.wasman.2017.10.034Suche in Google Scholar PubMed

Received: 2019-08-13
Accepted: 2019-12-11
Published Online: 2020-01-17
Published in Print: 2020-10-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0224/html?lang=de
Button zum nach oben scrollen