The infrared spectroscopy of chitosan films doped with silver and gold nanoparticles
-
Evgeniya S. Zemlyakova
, Vasilyi A. Slezhkin
Abstract
This work presents the dependences of the absorption intensity of the acid-soluble chitosan biopolymer films in the infrared (IR) region of the spectrum on the concentrations of silver and gold nanoparticles (NPs) of different morphologies. The interaction mechanisms in the vibrational spectra overlapping area of the silver NPs and chitosan molecules (2500–3500 cm−1) were observed. The influence of the metal NPs on the dipole moments of the OH-, NH3+- and CH-chitosan molecule group oscillations was established. This interaction leads to a linear increase of the IR absorption intensity with an increase of the silver nanoparticle concentration, synthesized by the citrate and borohydride methods. The presence of silver and gold ablative NPs in the chitosan films demonstrates the IR absorption intensity exponential decrease with the metal NPs’ concentrations.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] Rinaudo MJ. Prog. Polym. Sci. 2006, 31, 603–632.10.1016/j.progpolymsci.2006.06.001Search in Google Scholar
[2] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Prog. Polym. Sci. 2014, 39, 1644–1667.10.1016/j.progpolymsci.2014.02.008Search in Google Scholar
[3] Saleh TA. Article Aqua 2015, 64, 892–903.10.2166/aqua.2015.050Search in Google Scholar
[4] Saleh TA. Environ. Sci. Pollut. Res. 2015, 22, 16721–16731.10.1007/s11356-015-4866-zSearch in Google Scholar
[5] Saleh TA, Sarı A, Tuzen M. J. Mol. Liq. 2016, 219, 937–945.10.1016/j.molliq.2016.03.060Search in Google Scholar
[6] Pokhrel S, Yadav PN, Adhikari R. Nepal J. Sci. Technol. 2015, 16, 99–104.10.3126/njst.v16i1.14363Search in Google Scholar
[7] Croisier F, Jérôme C. Eur. Polym. J. 2015, 49, 780–792.10.1016/j.eurpolymj.2012.12.009Search in Google Scholar
[8] Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Int. J. Biol. Macromol. 2018, 110, 97–109.10.1016/j.ijbiomac.2017.08.140Search in Google Scholar
[9] Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Biomed. Res. Int. 2015, 2015, 821279.10.1155/2015/821279Search in Google Scholar
[10] Jiang T, Kumbar SG, Nair LS, Laurencin CT. Curr. Top. Med. Chem. 2008, 8, 54–64.10.2174/156802608783334015Search in Google Scholar
[11] Muzzarelli Riccardo AA, Tubertini O. Talanta 1969, 16, 1571–1577.10.1016/0039-9140(69)80218-3Search in Google Scholar
[12] Heiligtag FJ, Niederberger M. Mater. Today 2013, 16, 262–271.10.1016/j.mattod.2013.07.004Search in Google Scholar
[13] Salata OV. J. Nanobiotechnol. 2004, 2, 3.10.1186/1477-3155-2-3Search in Google Scholar PubMed PubMed Central
[14] Kamran M, Haroon M, Popoola SA, Almohammedi AR, Al-Saadi AA, Saleh TA. J. Mol. Liq. 2019, 273, 536–542.10.1016/j.molliq.2018.10.037Search in Google Scholar
[15] Haruna K, Saleh TA, Hossain MK, Al-Saadi AA. Chem. Eng. J. 2016, 304, 141–148.10.1016/j.cej.2016.06.050Search in Google Scholar
[16] Ali I, Akl MR, Meligi GA, Saleh TA. Results in Physics 2017, 7, 1319–1328.10.1016/j.rinp.2017.03.028Search in Google Scholar
[17] Saleh TA, Al-Shalalfeh MM, Al-Saadi AA. Sci. Rep. 2016, 6, 32185.10.1038/srep32185Search in Google Scholar PubMed PubMed Central
[18] Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales DJ, Vázquez-Lepe M, Kovalenko Y, Sanchez IC, Luna-Bárcenasa G. Eur. Polym. J. 2015, 67, 242–251.10.1016/j.eurpolymj.2015.03.066Search in Google Scholar
[19] Espinoza-Castaneda M, Escosura-Muñiz A, González-Ortiz G, Martín-Orúe SM, Francisco Pérez J, Merkoci A. Biosens. Bioelectron. 2013, 40, 271–276.10.1016/j.bios.2012.07.042Search in Google Scholar PubMed
[20] Huang D, Liao F, Molesa S, Redinger D, Subramanian V. J. Electrochem. Soc. 2003, 150, 412–417.10.1149/1.1627355Search in Google Scholar
[21] Malynych S, Chumanov G. J. Am. Chem. Soc. 2003, 125, 2896–2898.10.1021/ja029453pSearch in Google Scholar PubMed
[22] Regiel A, Irusta S, Kyzioł A, Arruebo M, Santamaria J. Nanotechnology 2013, 24, 015101.10.1088/0957-4484/24/1/015101Search in Google Scholar PubMed
[23] Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Int. J. Nanomed. 2012, 7, 1805–18.10.2147/IJN.S28077Search in Google Scholar PubMed PubMed Central
[24] Vimala K, Murali Mohan Y, Samba Sivudu K, Varaprasad K, Ravindra S, Narayana Reddy N, Padma Y, Sreedhar B, MohanaRajua K. Colloids Surf. B 2010, 76, 248–258.10.1016/j.colsurfb.2009.10.044Search in Google Scholar PubMed
[25] Tsibulnikova AV, Bryukhanov VV, Slezhkin VA. Russian Phys. J. 2015, 57, 1716–1724.10.1007/s11182-015-0443-7Search in Google Scholar
[26] Bryukhanov VV, Minaev BM, Tsibulnikova AV, Tikhomirova NS, Slezhkin VA. J. Opt. Technol. 2014, 81, 625–630.10.1364/JOT.81.000625Search in Google Scholar
[27] Saleh TA. J. Clean. Prod. 2018, 172, 2123–2132.10.1016/j.jclepro.2017.11.208Search in Google Scholar
[28] Saleh TA. Desalin. Water Treat. 2015, 57, 10730–10744.10.1080/19443994.2015.1036784Search in Google Scholar
[29] Nakanishi K. Infrared absorption spectroscopy, practical. Stanford University: Nankodo Company Limited, 1962.Search in Google Scholar
[30] Silva SML, Braga CRC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL (April 25th 2012). Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites, Infrared Spectroscopy - Materials Science, Engineering and Technology, Theophile Theophanides, IntechOpen, DOI: 10.5772/35522. Available from: https://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology/application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites.10.5772/35522Search in Google Scholar
[31] Gaponenko SV. Introduction to Nanophotonics. Cambridge University Press: Cambridge, 2010.10.1017/CBO9780511750502Search in Google Scholar
[32] Strelchuk V, Kolomys O, Golichenko BO, Boyko MI, Kaganovich EB, Krishchenko IM, Kravchenko S, Lytvyn O, Manoilov EG, Nasieka I. SPQEO 2015, 18, 46–52.10.15407/spqeo18.01.046Search in Google Scholar
[33] Maer SV. Plasmonics: Fundamentals and Applications. Springer: NY, USA, 2007.10.1007/0-387-37825-1Search in Google Scholar
[34] Bryukhanov VV, Tsibulnikova AV, Samusev IG, Slezhkin VA. J Appl. Spectrosc. 2014, 81, 570–576.10.1007/s10812-014-9971-0Search in Google Scholar
[35] Tsibulnikova AV, Slezhkin VA, Samusev IG, Bryukhanov VV. J. Nanophoton. 2018, 12, 030501.10.1117/1.JNP.12.030501Search in Google Scholar
[36] Govorov AO, Lee J, Kotov NA. Phys. Rev. 2007, 76, 25.10.1103/PhysRevB.76.125308Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Effect of temperature on the impact behavior of PVC/ASA binary blends with various ASA terpolymer contents
- The infrared spectroscopy of chitosan films doped with silver and gold nanoparticles
- The effect of the addition of a slip agent on the rheological properties of polyethylene: off-line and in-line measurements
- Analysis of the mechanical properties of polymer materials considering lateral confinement effects
- Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels
- Effects of MAH/St grafted nanocellulose on the properties of carbon reinforced styrene butadiene rubber
- Preparation and assembly
- Preparation, characterization and kinetics study of chitosan/PVA electrospun nanofiber membranes for the adsorption of dye from water
- Engineering and processing
- Polymer-induced metal diffusion during plastic processing: a reason for deposit formation
- Optimization of process parameters in plastic injection molding for minimizing the volumetric shrinkage and warpage using radial basis function (RBF) coupled with the k-fold cross validation technique
- Effects of process conditions on the heat transfer coefficient at the polymer-mold interface and tensile strength of thin-wall injection molding parts
Articles in the same Issue
- Frontmatter
- Material properties
- Effect of temperature on the impact behavior of PVC/ASA binary blends with various ASA terpolymer contents
- The infrared spectroscopy of chitosan films doped with silver and gold nanoparticles
- The effect of the addition of a slip agent on the rheological properties of polyethylene: off-line and in-line measurements
- Analysis of the mechanical properties of polymer materials considering lateral confinement effects
- Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels
- Effects of MAH/St grafted nanocellulose on the properties of carbon reinforced styrene butadiene rubber
- Preparation and assembly
- Preparation, characterization and kinetics study of chitosan/PVA electrospun nanofiber membranes for the adsorption of dye from water
- Engineering and processing
- Polymer-induced metal diffusion during plastic processing: a reason for deposit formation
- Optimization of process parameters in plastic injection molding for minimizing the volumetric shrinkage and warpage using radial basis function (RBF) coupled with the k-fold cross validation technique
- Effects of process conditions on the heat transfer coefficient at the polymer-mold interface and tensile strength of thin-wall injection molding parts