Startseite Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface modification of Sb-SnO2/potassium titanate composite and their performance for acrylic coatings

  • Xifeng Li , Shixiang Zuo , Chao Yao EMAIL logo , Wenjie Liu , Xiazhang Li und Guang Li
Veröffentlicht/Copyright: 18. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sb-SnO2/potassium titanate (SSP) composites were synthesized by densely coating Sb-doped SnO2 on the surface of fibrous-like potassium titanate. X-ray diffraction demonstrated that Sb was successfully doped into the crystal lattice of SnO2. To improve the dispersion of SSP composites in the acrylic resin, the as-prepared SSP was modified with sodium stearate. Fourier transform infrared spectra, thermogravimetric analysis, and transmission electron microscopy confirmed that stearate radicals existed on the surface of SSP in the form of physical adsorption. The hydrophilic degree of modified SSP was largely improved by water contact angle measurements. The properties (surface resistivity and mechanical properties) of the conductive coatings prepared by adding the obtained composites were investigated in detail. The modified SSP coatings exhibit more superior electrical conductivity due to their better dispersion in the matrix compared with SSP. Moreover, the obtained composite coatings present high pencil hardness of 4H–5H and excellent adhesion force, flexibility, and impact resistance.

Acknowledgments

This work was supported by Innovation Team of Six Talent Peaks of Jiangsu Province (XCL-CXTD-029), Key R&D Programs of Jiangsu Province (BE2017064), Key R&D Programs of Huaian City (HAG201630), and National Science Foundation of China (51674043, Funder Id: 10.13039/501100001809).

References

[1] Chang CC, Hsieh CY, Huang FH, Cheng LP. J. Appl. Polym. Sci. 2015, 132, 42411.10.1002/app.42411Suche in Google Scholar

[2] Chen ZH, Tang Y, Yu F, Chen JH, Chen HH. J. Coat. Technol. Res. 2008, 5, 259–269.10.1007/s11998-007-9063-7Suche in Google Scholar

[3] Chang CC, Huang FH, Hsieh CY, Chen CC, Cheng LP. J. Coat. Technol. Res. 2013, 10, 73–78.10.1007/s11998-012-9427-5Suche in Google Scholar

[4] Li DF, Wang W, Wang HJ, Jia XS, Wang JY. Appl. Surf. Sci. 2008, 255, 581–584.10.1016/j.apsusc.2008.06.150Suche in Google Scholar

[5] Baughman RH, Zakhidov AA, De Heer WA. Science 2002, 297, 787–792.10.1126/science.1060928Suche in Google Scholar

[6] Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Gangloff L, Schnell J-P, Semet V, Thien Binh V, Groening O. J. Mater. Chem. 2004, 14, 933–943.10.1039/b314155cSuche in Google Scholar

[7] Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, St Clair TL. Chem. Phys. Lett. 2002, 364, 303–308.10.1016/S0009-2614(02)01326-XSuche in Google Scholar

[8] Wu S. Mater. Lett. 2007, 61, 3526–3530.10.1016/j.matlet.2006.11.128Suche in Google Scholar

[9] Zhang DL, Deng ZB, Zhang JB, Chen LY. Mater. Chem. Phys. 2006, 98, 353−357.10.1016/j.matchemphys.2005.09.038Suche in Google Scholar

[10] Lin W, Ma RX, Shao W, Liu B. Appl. Surf. Sci. 2007, 253, 5179−5183.10.1016/j.apsusc.2006.11.032Suche in Google Scholar

[11] Novak I, Krupa I, Janigova I. Carbon 2005, 43, 841−848.10.1016/j.carbon.2004.11.019Suche in Google Scholar

[12] Jin J, Leesirisan S, Song M. Compos. Sci. Technol. 2010, 70, 1544−1549.10.1016/j.compscitech.2010.05.017Suche in Google Scholar

[13] Azim SS, Satheesh A, Ramu KK, Ramu S, Venkatachari G. Prog. Org. Coat. 2006, 55, 1−4.10.1016/j.porgcoat.2005.09.001Suche in Google Scholar

[14] Chen F, Li X, Wu J, Shen Q, Schoenung JM, Zhang L. Scripta Mater. 2013, 68, 297–300.10.1016/j.scriptamat.2012.10.046Suche in Google Scholar

[15] Granqvist CG, Hultåker A. Thin Solid Films. 2002, 411, 1–5.10.1016/S0040-6090(02)00163-3Suche in Google Scholar

[16] Sharma S, Volosin AM, Schmitt D, Seo DK. J. Mater. Chem. A 2013, 1, 699–706.10.1039/C2TA00002DSuche in Google Scholar

[17] Rakhshani AE, Makdisi Y, Ramazaniyan HA. J. Appl. Phys. 1998, 83, 1049–1057.10.1063/1.366796Suche in Google Scholar

[18] Kang T, Jang I, Oh S. Colloids Surf. A 2016, 501, 24–31.10.1016/j.colsurfa.2016.04.060Suche in Google Scholar

[19] Xu C, Fang L, Huang Q, Yin B, Ruan H, Li D. Thin Solid Films 2013, 531, 255–260.10.1016/j.tsf.2012.12.039Suche in Google Scholar

[20] Wu FQ, Yao C, Zhang GQ, Li X, Liu J. Ind. Mineral & Proc. 2008, 37, 7–10.Suche in Google Scholar

[21] Hu P, Yang H. Appl. Clay Sci. 2010, 48, 368–374.10.1016/j.clay.2010.01.008Suche in Google Scholar

[22] Li Y, Wang J, Feng B, Duan K, Weng J. J. Alloy Comp. 2015, 634, 37–42.10.1016/j.jallcom.2015.02.060Suche in Google Scholar

[23] Hu Y, Zhang H, Yang H. J. Alloy Comp. 2008, 453, 292–297.10.1016/j.jallcom.2006.11.062Suche in Google Scholar

[24] Wang LS, Lu HF, Hong RY, Feng WG. Powder Technol. 2012, 224, 124–128.10.1016/j.powtec.2012.02.039Suche in Google Scholar

[25] Wang Y, Zheng J, Jiang F, Zhang M. J. Mater. Sci: Mater. Electron. 2014, 25, 4524–4530.10.1007/s10854-014-2199-1Suche in Google Scholar

[26] Hu P, Yang H. Appl. Clay Sci. 2013, 83, 122–128.10.1016/j.clay.2013.08.025Suche in Google Scholar

[27] Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T. Compos. Sci. Technol. 2013, 74, 85–90.10.1016/j.compscitech.2012.10.008Suche in Google Scholar

[28] Ying F, Cui Y, Xue G, Qian H, Li A, Wang X, Zhang X, Jiang D. Polym. Bull. 2016, 73, 2815–2830.10.1007/s00289-016-1623-5Suche in Google Scholar

[29] Shang Q, Hao S, Wang W, Fu D, Ma T. J. Adhesion Sci. Technol. 2013, 27, 2642–2652.10.1080/01694243.2013.798926Suche in Google Scholar

Received: 2017-10-29
Accepted: 2018-04-29
Published Online: 2018-09-18
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0375/pdf?lang=de
Button zum nach oben scrollen