Influence of the polyacrylonitrile proportion on the fabricated UF blend membranes’ performance for humic acid removal
Abstract
Asymmetric blend membranes of polyethersulfone (PES)/polyacrylonitrile (PAN) were prepared and developed for ultrafiltration applications. The membranes were prepared by dissolving two polymers in N-methyl-2-pyrrolidone (NMP) as a solvent with diethylene glycol (DEG) and polyvinylpyrrolidone (PVP) as non-solvent and pore former, respectively. The produced membranes were characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy, and the hydrophilicity of membranes was tested by contact angle measurements. The performance of prepared membranes was carried out by an ultrafiltration testing unit, where the efficiency of membranes was determined according to the humic acid separation and treated water permeate flux. The results indicated that using 1 wt.% of PAN in polymer mixture provided a blending membrane with high mechanical properties and high performance; the humic acid rejection reached 92.47% with treated water permeate flux 70 l/m2·h at feed pressure 6 bar.
References
[1] Wang M, Wu LG, Mob JX, Gao CJ. J. Membr. Sci. 2005, 274, 200–208.10.1016/j.memsci.2005.05.035Suche in Google Scholar
[2] Yang MC, Liu TY. J. Membr. Sci. 2003, 226, 119–130.10.1016/j.memsci.2003.08.013Suche in Google Scholar
[3] Ramamoorthy M, Ulbricht M. J. Membr. Sci. 2003, 217, 207–214.10.1016/S0376-7388(03)00133-9Suche in Google Scholar
[4] Yang G, Zhang L, Feng H. J. Membr. Sci. 1999, 161, 31–40.10.1016/S0376-7388(99)00095-2Suche in Google Scholar
[5] Zeng M, Fang Z, Xu C. J. Membr. Sci. 2004, 230, 175–181.10.1016/j.memsci.2003.11.020Suche in Google Scholar
[6] Su BH, Fu P, Li Q, Tao Y, Li Z, Zao HS, Zhao CS. J. Mater. Sci. Mater. Med. 2008, 19, 745–751.10.1007/s10856-007-3006-9Suche in Google Scholar PubMed
[7] Azari S, Karimi M, Kish MH. Ind. Eng. Chem. Res. 2010, 49, 2442–2448.10.1021/ie900952vSuche in Google Scholar
[8] Shekarian E, Saljoughi E, Naderi A. J. Polym. Res. 2013, 20, 162.10.1007/s10965-013-0162-0Suche in Google Scholar
[9] Mohammadi T, Amirilargani M. Polym. Adv. Technol. 2009, 20, 993.10.1002/pat.1353Suche in Google Scholar
[10] Mohammadi T, Amirilargani M, Saljoughi E, J. Appl Polym. Sci. 2010, 116, 2251.Suche in Google Scholar
[11] Liu M, Xu ZK, Wan LS, Wu J, Ulbricht M. J. Membr. Sci. 2005, 249, 21–31.10.1016/j.memsci.2004.10.001Suche in Google Scholar
[12] Wang Y, Su Y, Sun Q, Ma X, Ma X, Jiang Z. J. Membr. Sci. 2006, 282, 44–51.10.1016/j.memsci.2006.05.005Suche in Google Scholar
[13] Mengping S, Yanlei S, Chunxia M, Zhongyi J. Ind. Eng. Chem. Res. 2010, 49, 790–796.10.1021/ie900560eSuche in Google Scholar
[14] Rahimpour A, Madaeni SS. J. Membr. Sci. 2007, 305, 299.10.1016/j.memsci.2007.08.030Suche in Google Scholar
[15] Kanagaraj P, Neelakandan S, Korean AN. J. Chem. Eng. 2014, 31, 1057–1064.10.1007/s11814-014-0018-2Suche in Google Scholar
[16] Amirilargani M, Sabetghadam A, Mohammad T. Polym. Adv. Technol. 2012, 23, 398–407.10.1002/pat.1888Suche in Google Scholar
[17] Abdallah H, Shalaby MS, Shaban AMH. Int. J. Chem. Eng. 2015, 2015, 1–9.10.1155/2015/896486Suche in Google Scholar
[18] Abdallah H, Moustafa AF, AlAnezi AA, El-Sayed HEM. Desalination 2014, 346, 30–36.10.1016/j.desal.2014.05.003Suche in Google Scholar
[19] Ali SS, Abdallah H. I.RE.CH.E. 2012, 4, 316–323.Suche in Google Scholar
[20] vande Ven W, Punt I, Kemperman A, Wessling M. J. Membr. Sci. 2009, 338, 67–74.10.1016/j.memsci.2009.04.008Suche in Google Scholar
[21] Peiris RH, Halle C, Budman H, Moresoli C, Peldszus SM, Huck P, Legge RL. Water Res. 2010, 44, 185–194.10.1016/j.watres.2009.09.036Suche in Google Scholar
[22] Lowe J, Hossain MM. J. Desalination. 2008, 218, 343–354.10.1016/j.desal.2007.02.030Suche in Google Scholar
[23] Her N, Amy G, McKnight D, Sohn J, Yoon YM. Water Res. 2003, 37, 4295–4303.10.1016/S0043-1354(03)00317-8Suche in Google Scholar
[24] Tang CY, Kwon YN, Leckie JO. J. Membr. Sci. 2009, 326, 526–532.10.1016/j.memsci.2008.10.043Suche in Google Scholar
[25] Sudoh R, Islam Md S, Sazawa K, Okazaki T, Hata N, Taguchi S, Kuramitz H. J. Environ. Chem. Eng. 2015, 3, 770–774.10.1016/j.jece.2015.04.007Suche in Google Scholar
[26] Wu H, Ai Z, Zhang L. Water Res. 2014, 52, 92–100.10.1016/j.watres.2013.12.041Suche in Google Scholar PubMed
[27] Jung HJ, Hong JS, Suh JK. J. Ind. Eng. Chem. 2013, 19, 1325–1330.10.1016/j.jiec.2012.12.036Suche in Google Scholar
[28] Oskoei V, Dehghani MH, Nazmara S, Heibati B, Asif M, Tyagi I, Agarwal S, Gupt VK. J. Mol. Liq. 2016, 213, 374–380.10.1016/j.molliq.2015.07.052Suche in Google Scholar
[29] Panda SR, Mukherjee M, De S. J. Water Process Eng. 2015, 6, 93–104.10.1016/j.jwpe.2015.03.007Suche in Google Scholar
[30] Song JJ, Huang Y, Nam SW, Yu M, Heo J, Her N, Flora JRV, Yoon Y. Sep. Purif. Technol. 2015, 144, 162–167.10.1016/j.seppur.2015.02.032Suche in Google Scholar
[31] Mehrparvar A, Rahimpour A, Jahanshahi M. J. Taiwan Inst. Chem. Eng. 2014, 45, 275–282.10.1016/j.jtice.2013.06.003Suche in Google Scholar
[32] Kumar RS, Arthanareeswaran G, Paul D, Kweon JH. Ecotox. Environ. Safe. 2015, 121, 223–228.10.1016/j.ecoenv.2015.03.036Suche in Google Scholar PubMed
[33] Khan S, Kim J, Sotto A, Bruggen BV. J. Ind. Eng. Chem. 2015, 21, 779–786.10.1016/j.jiec.2014.04.012Suche in Google Scholar
[34] Zuo D, Xu Y, Xu W, Zou H. J. Polym. Sci. 2008, 26, 405−414.10.1142/S0256767908003072Suche in Google Scholar
[35] Li N, Xiao C, An S, Hu X. Desalination 2010, 250, 530–537.10.1016/j.desal.2008.10.027Suche in Google Scholar
[36] Zhang X, Xiao C, Hu X. Desalin. Water Treat. 2013, 51, 3979–3987.10.1080/19443994.2013.800672Suche in Google Scholar
[37] Jung B, Yoon JK, Kim B, Rhee HW. J. Membr. Sci. 2004, 243, 45–57.10.1016/j.memsci.2004.06.011Suche in Google Scholar
[38] Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP. J. Membr. Sci. 2004, 231, 209–224.10.1016/j.memsci.2003.11.026Suche in Google Scholar
[39] Han MJ, Nam ST. J. Membr. Sci. 2002, 202, 55–61.10.1016/S0376-7388(01)00718-9Suche in Google Scholar
[40] Chakrabarty B, Ghoshal AK, Purkait MK. J. Membr. Sci. 2008, 315, 36–47.10.1016/j.memsci.2008.02.027Suche in Google Scholar
[41] Razmjou A, Mansouri J, Chen V. J. Membr. Sci. 2011, 378, 73–84.10.1016/j.memsci.2010.10.019Suche in Google Scholar
[42] Amirilargani M, Sadrzadeh M, Mohammadi T. J. Polym. Res. 2010, 17, 363–377.10.1007/s10965-009-9323-6Suche in Google Scholar
[43] Omidvar M, Mousavi SM,Soltanieh M,Safekordi AA. J. Environ. Health Sci. Eng. 2014, 12, 12–18.10.1186/2052-336X-12-12Suche in Google Scholar PubMed PubMed Central
[44] Lohokare HR, Muthu MR, Agarwal GP, Kharul UK. J. Membr. Sci. 2008, 320, 159–166.10.1016/j.memsci.2008.03.068Suche in Google Scholar
[45] Baudry MR, Bouzin A, Hallery C, Girard J, Leperoux C. Sep. Purif. Technol. 2015, 147, 62–81.10.1016/j.seppur.2015.03.056Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions
- Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites
- Influence of the polyacrylonitrile proportion on the fabricated UF blend membranes’ performance for humic acid removal
- Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites
- Conductive mechanism of carbon black/polyimide composite films
- Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility
- Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite
- Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin
- Fabrication of bilayer resin-bonded fixed abrasive wires using the pultrusion process
- Guidelines for balancing the flow in extrusion dies: the influence of the material rheology
Artikel in diesem Heft
- Frontmatter
- Original articles
- Mechanical and rheological properties of polystyrene-block-polybutadiene-block-polystyrene copolymer reinforced with carbon nanotubes: effect of processing conditions
- Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites
- Influence of the polyacrylonitrile proportion on the fabricated UF blend membranes’ performance for humic acid removal
- Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites
- Conductive mechanism of carbon black/polyimide composite films
- Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility
- Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via in situ expansion and subsequent reduction of graphite
- Preparation and performance optimization of PVDF anti-fouling membrane modified by chitin
- Fabrication of bilayer resin-bonded fixed abrasive wires using the pultrusion process
- Guidelines for balancing the flow in extrusion dies: the influence of the material rheology