Startseite Fabrication of bilayer resin-bonded fixed abrasive wires using the pultrusion process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication of bilayer resin-bonded fixed abrasive wires using the pultrusion process

  • Yi-Shien Liou und Shenq-Yih Luo EMAIL logo
Veröffentlicht/Copyright: 25. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The fabrication of resin-bonded abrasive composite materials with constant cross-section was achieved by wire pultrusion wherein a piano wire of diameter 120 μm used as a core was pulled through a surface pretreatment, resin bath and into a die orifice and oven, where the impregnated resin slurry was cured at a moderate temperature. The bilayer resin-bonded fixed diamond wire with a diameter of about 191–205 μm with an inner layer of phenolic-modified epoxy resin and an outer layer of phenolic resin through the pultrusion method was presented. The results showed that when liquid resin slurry with higher diamond concentration during the pultrusion process was used, a larger wire diameter, less diamond spacing and higher diamond protrusion were obtained.

Acknowledgments

The authors are thankful to the Ministry of Science and Technology in Taiwan for supporting this study under contracts NSC 100-2221-E-211-005.

References

[1] Lam YC, Jianhua LI, Joshi SC. Polym. Compos. 2003, 4, 199–209.10.1002/pc.10020Suche in Google Scholar

[2] Advani S, Hsiao K-T. In Manufacturing Techniques for Polymer Matrix Composites, Joshi SC, Ed., Woodhead Publishing Limited: Cambridge, UK, 2012, Chap. 12, p. 381.Suche in Google Scholar

[3] Silva FJG, Ferreira F, Costa C, Ribeiro MCS, Meira Castro AC. Composites Part B 2012, 43, 1823–1829.10.1016/j.compositesb.2012.01.057Suche in Google Scholar

[4] Baran I, Hattel JH, Akkerman R. Composites Part B 2015, 68, 365–374.10.1016/j.compositesb.2014.07.032Suche in Google Scholar

[5] Enomoto T, Shimazaki Y, Tani Y, Suzuki M, Kanda Y. Ann. CIRP 1999, 48, 273–276.10.1016/S0007-8506(07)63182-5Suche in Google Scholar

[6] Wu H. Precision Eng. 2016, 43, 1–9.10.1016/j.precisioneng.2015.08.008Suche in Google Scholar

[7] Webster J, Tricard M. Ann. CIRP 2004, 53, 597–617.10.1016/S0007-8506(07)60031-6Suche in Google Scholar

[8] Sung CM. United States Patent 6915796, 2005.Suche in Google Scholar

[9] Baran I, Akkerman R, Hattel JH. Composites Part B 2014, 64, 194–201.10.1016/j.compositesb.2014.04.030Suche in Google Scholar

[10] Joshi SC, Lam YC, Tun UW. Composites Part A 2003, 34, 1151–1159.10.1016/j.compositesa.2003.08.003Suche in Google Scholar

[11] Tena I, Sarrionandia M, Torre J, Aurrekoetxea J. Composites Part B 2016, 89, 9–17.10.1016/j.compositesb.2015.11.027Suche in Google Scholar

[12] Yun MS, Lee WI. Compos. Sci. Technol. 2008, 68, 140–146.10.1016/j.compscitech.2007.05.032Suche in Google Scholar

[13] Liu XL, Crouch IG, Lam YC. Compos. Sci. Technol. 2000, 60, 857–864.10.1016/S0266-3538(99)00189-XSuche in Google Scholar

[14] Zheng YP, Zhang JX, Li Q. Polym.-Plast. Technol. Eng. 2009, 48, 384–388.10.1080/03602550902725381Suche in Google Scholar

[15] Chiba Y, Tani Y, Enomoto T, Sato H. Ann. CIRP 2003, 52, 281–284.10.1016/S0007-8506(07)60584-8Suche in Google Scholar

Received: 2016-8-24
Accepted: 2017-2-19
Published Online: 2017-3-25
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0303/html?lang=de
Button zum nach oben scrollen