Rheological properties and crystallization behaviors of long chain branched polyethylene prepared by melt branching reaction
Abstract
Long chain branched polyethylene (LCBPE) without gel was prepared by melt branching reaction in a Haake torque rheometer in the presence of peroxide and different multi-functional acrylate monomers, and the optimal reaction time was determined according to the transient torque curves. The Fourier transform infrared (FTIR) results indicated that multi-functional monomers had been grafted onto HDPE backbone. Rheometer, 13C NMR, and high-temperature gel permeation chromatography (HT-GPC) coupled with triple detectors were used to characterize the microstructure of the LCBPE. The results showed the LCB content and the degree of branching increased with the increasing of functionality of the multi-functional monomers. Moreover, the LCBPE samples exhibited higher apparent zero shear rate activation energy and clear strain-hardening behavior compared with pure HDPE. Various rheological plots including viscosity, storage modulus, loss angle, and Cole-Cole plots were used to distinguish LCBPE from linear HDPE. A possible mechanism for melt branching reaction was also discussed in this paper. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to study the influences of LCB on the crystallization behavior and crystal morphology of all samples. It was found that the melt temperature and crystal morphologies of LCBPE were evidently different from that of pure HDPE due to the introduction of LCB.
References
[1] Cheng S, Phillips E, Parks L. Radiat. Phys. Chem. 2010, 79, 329–334.10.1016/j.radphyschem.2009.08.046Suche in Google Scholar
[2] Yan D, Wang WJ, Zhu S. Polymer 1999, 40, 1737–1744.10.1016/S0032-3861(98)00318-8Suche in Google Scholar
[3] Gabriel C, Kokko E, Löfgren B, Seppälä J, Münstedt H. Polymer 2002, 43, 6383–6390.10.1016/S0032-3861(02)00564-5Suche in Google Scholar
[4] Bubeck RA. Mater. Sci. Eng. R 2002, 39, 1–28.10.1016/S0927-796X(02)00074-8Suche in Google Scholar
[5] Cheng S, Dehaye F, Bailly C, Biebuyck JJ, Legras R, Parks L. Nucl. Instrum. Methods Phys. Res. Sect. B. 2005, 236, 130–136.10.1016/j.nimb.2005.03.272Suche in Google Scholar
[6] Cheng S, Phillips E, Parks L. Radiat. Phys. Chem. 2009, 78, 563–566.10.1016/j.radphyschem.2009.03.043Suche in Google Scholar
[7] Iedema PD, Remerie K, van der Ham M, Biemond E. Polymer 2013, 54, 4093–4104.10.1016/j.polymer.2013.06.001Suche in Google Scholar
[8] Pérez CJ, Cassano GA, Vallés EM, Failla MD, Quinzani LM. Polymer 2002, 43, 2711–2720.10.1016/S0032-3861(02)00076-9Suche in Google Scholar
[9] Golriz M, Khonakdar HA, Morshedian J. Thermochim. Acta 2014, 590, 259–265.10.1016/j.tca.2014.07.010Suche in Google Scholar
[10] Fischer AM, Wolf FK, Frey H. Macromol. Chem. Phys. 2012, 213, 1349–1358.10.1002/macp.201200082Suche in Google Scholar
[11] Zhang ZJ, Wan D, Xing HP, Zhang ZJ, Tan HY, Wang L, Zheng J, An YJ, Tang T. Polymer 2012, 53, 121–129.10.1016/j.polymer.2011.11.033Suche in Google Scholar
[12] Li S, Xiao M, Guan Y, Wei D, Xiao H, Zheng A. Eur. Polym. J. 2012, 48, 362–371.10.1016/j.eurpolymj.2011.11.015Suche in Google Scholar
[13] Yu Y, DesLauriers PJ, Rohlfing DC. Polymer 2005, 46, 5165–5182.10.1016/j.polymer.2005.04.036Suche in Google Scholar
[14] Langston JA, Colby RH, Chung TCM, Shimizu F, Suzuki T, Aoki M. Macromolecules 2007, 40, 2712–2720.10.1021/ma062111+Suche in Google Scholar
[15] Gell CB, Graessley WW, Efstratiadis V, Pitsikalis M, Hadjichristidis N. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 1943–1954.10.1002/(SICI)1099-0488(19970915)35:12<1943::AID-POLB9>3.0.CO;2-QSuche in Google Scholar
[16] van Ruymbeke E, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C. J. Rheol. 2005, 49, 1503–1520.10.1122/1.2048743Suche in Google Scholar
[17] Vittorias I, Parkinson M, Klimke K, Debbaut B, Wilhelm M. Rheol. Acta 2006, 46, 321–340.10.1007/s00397-006-0111-5Suche in Google Scholar
[18] Liu J, Zhang S, Zhang L, Bai Y. Polymer 2014, 55, 2472–2480.10.1016/j.polymer.2014.02.024Suche in Google Scholar
[19] Tian J, Yu W, Zhou C. Polymer 2006, 47, 7962–7969.10.1016/j.polymer.2006.09.042Suche in Google Scholar
[20] He C, Woodadams P, Dealy JM. J. Rheol. 2004, 48, 711–724.10.1122/1.1763943Suche in Google Scholar
[21] Tian J, Yu W, Zhou C. J. Appl. Polym. Sci. 2007, 104, 3592–3600.10.1002/app.26024Suche in Google Scholar
[22] Graebling D. Macromolecules 2002, 35, 4602–4610.10.1021/ma0109469Suche in Google Scholar
[23] And WA, Dealy JM, Degroot AW, Redwine OD. Macromolecules 2000, 33, 7489–7499.10.1021/ma991533zSuche in Google Scholar
[24] Weng W, Hu W, Dekmezian AH, Ruff CJ. Macromolecules 2002, 35, 3838–3843.10.1021/ma020050jSuche in Google Scholar
[25] Zhang Z, Wan D, Xing H, Zhang Z, Tan H, Wang L, Zheng J, An Y, Tang T. Polymer 2012, 53, 121–129.10.1016/j.polymer.2011.11.033Suche in Google Scholar
[26] Parmar HB, Gupta RK, Bhattacharya SN. Polym. Eng. Sci. 2009, 49, 1806–1813.10.1002/pen.21401Suche in Google Scholar
[27] Jørgensen JK, Stori A, Redford K, Ommundsen E. Polymer 2005, 46, 12256–12266.10.1016/j.polymer.2005.10.084Suche in Google Scholar
[28] Gotsis AD, Zeevenhoven BLF, Hogt AH. Polym. Eng. Sci. 2004, 44, 973–982.10.1002/pen.20089Suche in Google Scholar
[29] Malmberg A, Gabriel C, Steffl T, Münstedt H, Löfgren B. Macromolecules 2002, 35, 1038–1048.10.1021/ma010753lSuche in Google Scholar
[30] Kolodka E, Wang WJ, Zhu S, Hamielec AE. Macromolecules 2002, 35, 10062–10070.10.1021/ma021171mSuche in Google Scholar
[31] Khonakdar HA. Polym. Adv. Technol. 2014, 25, 835–841.10.1002/pat.3314Suche in Google Scholar
[32] Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A. Polymer 2009, 50, 6121–6128.10.1016/j.polymer.2009.10.006Suche in Google Scholar
[33] Robertson CG, Srinivas S. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 1671–1684.10.1002/polb.20038Suche in Google Scholar
[34] Srivatsan Srinivas CAG, And DJL, Brant P. Macromolecules 2001, 34, 3115–3117.10.1021/ma0021794Suche in Google Scholar
[35] Hepperle J, Münstedt H. Rheol. Acta 2006, 45, 717–727.10.1007/s00397-005-0031-9Suche in Google Scholar
[36] And WA, Dealy JM. Macromolecules 2000, 33, 7481–7488.10.1021/ma991534rSuche in Google Scholar
[37] Ye Z, Alobaidi F, Zhu S, Subramanian R. Macromol. Chem. Phys. 2005, 206, 2096–2105.10.1002/macp.200500248Suche in Google Scholar
[38] Starck P, Malmberg A, Löfgren B. J. Appl. Polym. Sci. 2002, 83, 1140–1156.10.1002/app.10152Suche in Google Scholar
[39] Bonchev D, Dekmezian AH, Markel E, Faldi A. J. Appl. Polym. Sci. 2003, 90, 2648–2656.10.1002/app.12906Suche in Google Scholar
[40] Ruymbeke EV, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C. J. Rheol. 2005, 49, 1503–1520.10.1122/1.2048743Suche in Google Scholar
[41] And WA, Costeux S. Macromolecules 2001, 34, 6281–6290.10.1021/ma0017034Suche in Google Scholar
[42] Mei YF, Guo BH, Xu J. Chin. Chem. Lett. 2016, 27, 588–592.10.1016/j.cclet.2016.02.023Suche in Google Scholar
[43] Chen Y, Zou H, Liang M, Cao Y. Thermochim. Acta 2014, 586, 1–8.10.1016/j.tca.2014.04.007Suche in Google Scholar
[44] Yang B, Yang M, Wang WJ, Zhu S. Polym. Eng. Sci. 2012, 52, 21–34.10.1002/pen.22040Suche in Google Scholar
[45] Wang L, Wan D, Qiu J, Tang T. Polymer 2012, 53, 4737–4757.10.1016/j.polymer.2012.08.036Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- Antistatic surface properties of plastics using donor-accepter molecular compounding antistatic agent
- Rheological properties and crystallization behaviors of long chain branched polyethylene prepared by melt branching reaction
- An investigation into the structure and morphology of polyamide 6/polyaniline hybrid fibers
- Natural rubber/tetra-needle-like zinc oxide whisker composites: their preparation and characterization
- Fabrication of short glass fiber reinforced phenol-formaldehyde-lignin and polyurethane-based composite foam: mechanical, friability, and shape memory studies
- Effect of the particle diameter of the chemical foaming agent on the foaming process and the cellular structure of one-shot compression molded polyethylene foams
- Recycling waste tire rubber by water jet pulverization: powder characteristics and reinforcing performance in natural rubber composites
- Monitoring of the injection and holding phases by using a modular injection mold
- Influence of mold temperature and process time on the degree of cure of epoxy-based materials for thermoset injection molding and prepreg compression molding
- Calendering of non-isothermal Rabinowitsch fluid
- Simulation of dynamic gas penetrations on fingering behaviors during gas-assisted injection molding
Artikel in diesem Heft
- Frontmatter
- Original articles
- Antistatic surface properties of plastics using donor-accepter molecular compounding antistatic agent
- Rheological properties and crystallization behaviors of long chain branched polyethylene prepared by melt branching reaction
- An investigation into the structure and morphology of polyamide 6/polyaniline hybrid fibers
- Natural rubber/tetra-needle-like zinc oxide whisker composites: their preparation and characterization
- Fabrication of short glass fiber reinforced phenol-formaldehyde-lignin and polyurethane-based composite foam: mechanical, friability, and shape memory studies
- Effect of the particle diameter of the chemical foaming agent on the foaming process and the cellular structure of one-shot compression molded polyethylene foams
- Recycling waste tire rubber by water jet pulverization: powder characteristics and reinforcing performance in natural rubber composites
- Monitoring of the injection and holding phases by using a modular injection mold
- Influence of mold temperature and process time on the degree of cure of epoxy-based materials for thermoset injection molding and prepreg compression molding
- Calendering of non-isothermal Rabinowitsch fluid
- Simulation of dynamic gas penetrations on fingering behaviors during gas-assisted injection molding