Home Calendering of non-isothermal Rabinowitsch fluid
Article
Licensed
Unlicensed Requires Authentication

Calendering of non-isothermal Rabinowitsch fluid

  • Muhammad Sajid , Hira Siddique , Nasir Ali and Muhammad Asif Javed EMAIL logo
Published/Copyright: March 15, 2017
Become an author with De Gruyter Brill

Abstract:

A non-isothermal analysis of calendering by using the Rabinowitsch fluid model is presented in this article. The flow equations are simplified by utilizing the lubrication approximation theory. The exact expressions of velocity and pressure gradient are obtained. The pressure distribution and engineering quantities are computed numerically by employing the Runge-Kutta algorithm. The temperature distribution is obtained by solving the energy equation numerically using the hybrid numerical method. The influence of the involved parameters on the velocity profile, pressure, pressure gradient and mechanical quantities such as roll-separating force, power function and exiting sheet thickness are shown graphically. The temperature distribution at various axial points is also shown through graphs.

References

[1] Gaskell RE. J. Appl. Mech. 1950, 17, 334–337.10.1115/1.4010136Search in Google Scholar

[2] Alston WW, Astill KN. J. Appl. Polym. Sci. 1973, 17, 3157–3174.10.1002/app.1973.070171018Search in Google Scholar

[3] Paslay PR. J. Appl. Mech. 1957, 24, 602–608.10.1115/1.4011607Search in Google Scholar

[4] McKelvey JM. Polymer Processing, Wiley: New York, 1962.Search in Google Scholar

[5] Brazinsky I, Cosway HF, Valle CF Jr, Jones R, Clark R, Story V. J. Appl. Polym. Sci. 1970, 14, 2771–2784.10.1002/app.1970.070141111Search in Google Scholar

[6] Middleman S. Fundamentals of Polymer Processing, McGraw-Hill: New York, 1977, p 249–259.Search in Google Scholar

[7] Tadmor Z, Gogos CG. Principles of Polymer Processing, John Wiley Sons: Haifa, Israel, 1979.Search in Google Scholar

[8] Bergen JT, Scott GW. J. Appl. Mech. 1951, 18, 101–106.10.1115/1.4010227Search in Google Scholar

[9] Kiparissides C, Vlachopoulos J. Polym. Eng. Sci. 1976, 16, 712–719.10.1002/pen.760161010Search in Google Scholar

[10] Zheng R, Tanner RI. J. Non-Newtonian Fluid Mech. 1988, 28, 149–170.10.1016/0377-0257(88)85037-7Search in Google Scholar

[11] Kiparissides C, Vlachopoulos J. Polym. Eng. Sci. 1978, 18, 210–214.10.1002/pen.760180307Search in Google Scholar

[12] Mitsoulis E, Vlachopoulos J, Mirza FA. Polym. Eng. Sci. 1985, 25, 6–18.10.1002/pen.760250103Search in Google Scholar

[13] Sofou S, Mitsoulis E. J. Plast. Film Sheet. 2004, 20, 185–222.10.1177/8756087904047660Search in Google Scholar

[14] Mitsoulis E. J. Non-Newtonian Fluid Mech. 2008, 154, 77–88.10.1016/j.jnnfm.2008.03.001Search in Google Scholar

[15] Arcos JC, Méndez F, Bautista O. Int. J. Heat Mass Transfer 2011, 54, 3979–3986.10.1016/j.ijheatmasstransfer.2011.04.027Search in Google Scholar

[16] Arcos JC, Bautista O, Méndez F, Bautista EG. Eur. J. Mech. B Fluids 2012, 36, 97–103.10.1016/j.euromechflu.2012.03.012Search in Google Scholar

[17] Hernández A, Arcos J, Méndez F, Bautista O. Appl. Math. Modell. 2013, 37, 6952–6963.10.1016/j.apm.2013.02.010Search in Google Scholar

[18] Arcos JC, Bautista O, Méndez F, Bautista EG. J. Non-Newtonian Fluid Mech. 2012, 177–178, 29–36.Search in Google Scholar

[19] Arcos JC, Bautista O, Méndez F. J. Non-Newtonian Fluid Mech. 2012, 177–178, 29–36.10.1016/j.jnnfm.2012.04.004Search in Google Scholar

[20] Zahid M, Rana MA, Siddiqui AM, Haroon T. J. Plast. Film Sheet. 2015, 32, 74–96.10.1177/8756087915579304Search in Google Scholar

[21] Ali N, Javed MA, Sajid M. J. Non-Newtonian Fluid Mech. 2015, 225, 28–36.10.1016/j.jnnfm.2015.09.005Search in Google Scholar

[22] Calcagno BO, Hart KR, Crone WC. Mech. Mater. 2016, 93, 257–272.10.1016/j.mechmat.2015.10.017Search in Google Scholar

[23] Sajid M, Ali N, Javed MA. J. Plast. Film Sheet. 2016. DOI: 10.1177/8756087916635855.Search in Google Scholar

[24] Javed MA, Ali N, Sajid M. J. Plast. Film Sheet. 2016. DOI: 10.1177/8756087916647998Search in Google Scholar

[25] Wada S, Hayashi H. Bull. JSME 1971, 14, 279–286.10.1299/jsme1958.14.279Search in Google Scholar

[26] Singh UP, Gupta RD, Kapur VK. ASME J. Tribol. 2012, 134, 1341–1345.10.1115/1.4007350Search in Google Scholar

[27] Lin JR. Int. J. Mech. Sci. 1996, 39, 373–384.10.1016/0020-7403(95)00066-6Search in Google Scholar

[28] Ariel PD. Int. J. Num. Methods Fluids 1992, 14, 757–774.10.1002/fld.1650140702Search in Google Scholar

[29] Ariel PD. J. Comput. Appl. Math. 1995, 59, 9–24.10.1016/0377-0427(94)00012-PSearch in Google Scholar

Received: 2016-8-9
Accepted: 2017-1-24
Published Online: 2017-3-15
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0294/html
Scroll to top button