Home Rheological properties and crystallization behaviors of long chain branched polyethylene prepared by melt branching reaction
Article
Licensed
Unlicensed Requires Authentication

Rheological properties and crystallization behaviors of long chain branched polyethylene prepared by melt branching reaction

  • Xiao-kun Liang , Zhu Luo EMAIL logo , Le Yang , Jiang-tao Wei , Xia Yuan and Qiang Zheng
Published/Copyright: February 21, 2017
Become an author with De Gruyter Brill

Abstract

Long chain branched polyethylene (LCBPE) without gel was prepared by melt branching reaction in a Haake torque rheometer in the presence of peroxide and different multi-functional acrylate monomers, and the optimal reaction time was determined according to the transient torque curves. The Fourier transform infrared (FTIR) results indicated that multi-functional monomers had been grafted onto HDPE backbone. Rheometer, 13C NMR, and high-temperature gel permeation chromatography (HT-GPC) coupled with triple detectors were used to characterize the microstructure of the LCBPE. The results showed the LCB content and the degree of branching increased with the increasing of functionality of the multi-functional monomers. Moreover, the LCBPE samples exhibited higher apparent zero shear rate activation energy and clear strain-hardening behavior compared with pure HDPE. Various rheological plots including viscosity, storage modulus, loss angle, and Cole-Cole plots were used to distinguish LCBPE from linear HDPE. A possible mechanism for melt branching reaction was also discussed in this paper. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to study the influences of LCB on the crystallization behavior and crystal morphology of all samples. It was found that the melt temperature and crystal morphologies of LCBPE were evidently different from that of pure HDPE due to the introduction of LCB.

References

[1] Cheng S, Phillips E, Parks L. Radiat. Phys. Chem. 2010, 79, 329–334.10.1016/j.radphyschem.2009.08.046Search in Google Scholar

[2] Yan D, Wang WJ, Zhu S. Polymer 1999, 40, 1737–1744.10.1016/S0032-3861(98)00318-8Search in Google Scholar

[3] Gabriel C, Kokko E, Löfgren B, Seppälä J, Münstedt H. Polymer 2002, 43, 6383–6390.10.1016/S0032-3861(02)00564-5Search in Google Scholar

[4] Bubeck RA. Mater. Sci. Eng. R 2002, 39, 1–28.10.1016/S0927-796X(02)00074-8Search in Google Scholar

[5] Cheng S, Dehaye F, Bailly C, Biebuyck JJ, Legras R, Parks L. Nucl. Instrum. Methods Phys. Res. Sect. B. 2005, 236, 130–136.10.1016/j.nimb.2005.03.272Search in Google Scholar

[6] Cheng S, Phillips E, Parks L. Radiat. Phys. Chem. 2009, 78, 563–566.10.1016/j.radphyschem.2009.03.043Search in Google Scholar

[7] Iedema PD, Remerie K, van der Ham M, Biemond E. Polymer 2013, 54, 4093–4104.10.1016/j.polymer.2013.06.001Search in Google Scholar

[8] Pérez CJ, Cassano GA, Vallés EM, Failla MD, Quinzani LM. Polymer 2002, 43, 2711–2720.10.1016/S0032-3861(02)00076-9Search in Google Scholar

[9] Golriz M, Khonakdar HA, Morshedian J. Thermochim. Acta 2014, 590, 259–265.10.1016/j.tca.2014.07.010Search in Google Scholar

[10] Fischer AM, Wolf FK, Frey H. Macromol. Chem. Phys. 2012, 213, 1349–1358.10.1002/macp.201200082Search in Google Scholar

[11] Zhang ZJ, Wan D, Xing HP, Zhang ZJ, Tan HY, Wang L, Zheng J, An YJ, Tang T. Polymer 2012, 53, 121–129.10.1016/j.polymer.2011.11.033Search in Google Scholar

[12] Li S, Xiao M, Guan Y, Wei D, Xiao H, Zheng A. Eur. Polym. J. 2012, 48, 362–371.10.1016/j.eurpolymj.2011.11.015Search in Google Scholar

[13] Yu Y, DesLauriers PJ, Rohlfing DC. Polymer 2005, 46, 5165–5182.10.1016/j.polymer.2005.04.036Search in Google Scholar

[14] Langston JA, Colby RH, Chung TCM, Shimizu F, Suzuki T, Aoki M. Macromolecules 2007, 40, 2712–2720.10.1021/ma062111+Search in Google Scholar

[15] Gell CB, Graessley WW, Efstratiadis V, Pitsikalis M, Hadjichristidis N. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 1943–1954.10.1002/(SICI)1099-0488(19970915)35:12<1943::AID-POLB9>3.0.CO;2-QSearch in Google Scholar

[16] van Ruymbeke E, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C. J. Rheol. 2005, 49, 1503–1520.10.1122/1.2048743Search in Google Scholar

[17] Vittorias I, Parkinson M, Klimke K, Debbaut B, Wilhelm M. Rheol. Acta 2006, 46, 321–340.10.1007/s00397-006-0111-5Search in Google Scholar

[18] Liu J, Zhang S, Zhang L, Bai Y. Polymer 2014, 55, 2472–2480.10.1016/j.polymer.2014.02.024Search in Google Scholar

[19] Tian J, Yu W, Zhou C. Polymer 2006, 47, 7962–7969.10.1016/j.polymer.2006.09.042Search in Google Scholar

[20] He C, Woodadams P, Dealy JM. J. Rheol. 2004, 48, 711–724.10.1122/1.1763943Search in Google Scholar

[21] Tian J, Yu W, Zhou C. J. Appl. Polym. Sci. 2007, 104, 3592–3600.10.1002/app.26024Search in Google Scholar

[22] Graebling D. Macromolecules 2002, 35, 4602–4610.10.1021/ma0109469Search in Google Scholar

[23] And WA, Dealy JM, Degroot AW, Redwine OD. Macromolecules 2000, 33, 7489–7499.10.1021/ma991533zSearch in Google Scholar

[24] Weng W, Hu W, Dekmezian AH, Ruff CJ. Macromolecules 2002, 35, 3838–3843.10.1021/ma020050jSearch in Google Scholar

[25] Zhang Z, Wan D, Xing H, Zhang Z, Tan H, Wang L, Zheng J, An Y, Tang T. Polymer 2012, 53, 121–129.10.1016/j.polymer.2011.11.033Search in Google Scholar

[26] Parmar HB, Gupta RK, Bhattacharya SN. Polym. Eng. Sci. 2009, 49, 1806–1813.10.1002/pen.21401Search in Google Scholar

[27] Jørgensen JK, Stori A, Redford K, Ommundsen E. Polymer 2005, 46, 12256–12266.10.1016/j.polymer.2005.10.084Search in Google Scholar

[28] Gotsis AD, Zeevenhoven BLF, Hogt AH. Polym. Eng. Sci. 2004, 44, 973–982.10.1002/pen.20089Search in Google Scholar

[29] Malmberg A, Gabriel C, Steffl T, Münstedt H, Löfgren B. Macromolecules 2002, 35, 1038–1048.10.1021/ma010753lSearch in Google Scholar

[30] Kolodka E, Wang WJ, Zhu S, Hamielec AE. Macromolecules 2002, 35, 10062–10070.10.1021/ma021171mSearch in Google Scholar

[31] Khonakdar HA. Polym. Adv. Technol. 2014, 25, 835–841.10.1002/pat.3314Search in Google Scholar

[32] Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A. Polymer 2009, 50, 6121–6128.10.1016/j.polymer.2009.10.006Search in Google Scholar

[33] Robertson CG, Srinivas S. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 1671–1684.10.1002/polb.20038Search in Google Scholar

[34] Srivatsan Srinivas CAG, And DJL, Brant P. Macromolecules 2001, 34, 3115–3117.10.1021/ma0021794Search in Google Scholar

[35] Hepperle J, Münstedt H. Rheol. Acta 2006, 45, 717–727.10.1007/s00397-005-0031-9Search in Google Scholar

[36] And WA, Dealy JM. Macromolecules 2000, 33, 7481–7488.10.1021/ma991534rSearch in Google Scholar

[37] Ye Z, Alobaidi F, Zhu S, Subramanian R. Macromol. Chem. Phys. 2005, 206, 2096–2105.10.1002/macp.200500248Search in Google Scholar

[38] Starck P, Malmberg A, Löfgren B. J. Appl. Polym. Sci. 2002, 83, 1140–1156.10.1002/app.10152Search in Google Scholar

[39] Bonchev D, Dekmezian AH, Markel E, Faldi A. J. Appl. Polym. Sci. 2003, 90, 2648–2656.10.1002/app.12906Search in Google Scholar

[40] Ruymbeke EV, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C. J. Rheol. 2005, 49, 1503–1520.10.1122/1.2048743Search in Google Scholar

[41] And WA, Costeux S. Macromolecules 2001, 34, 6281–6290.10.1021/ma0017034Search in Google Scholar

[42] Mei YF, Guo BH, Xu J. Chin. Chem. Lett. 2016, 27, 588–592.10.1016/j.cclet.2016.02.023Search in Google Scholar

[43] Chen Y, Zou H, Liang M, Cao Y. Thermochim. Acta 2014, 586, 1–8.10.1016/j.tca.2014.04.007Search in Google Scholar

[44] Yang B, Yang M, Wang WJ, Zhu S. Polym. Eng. Sci. 2012, 52, 21–34.10.1002/pen.22040Search in Google Scholar

[45] Wang L, Wan D, Qiu J, Tang T. Polymer 2012, 53, 4737–4757.10.1016/j.polymer.2012.08.036Search in Google Scholar

Received: 2016-6-15
Accepted: 2017-1-17
Published Online: 2017-2-21
Published in Print: 2018-1-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0221/html
Scroll to top button