Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
-
Manuel Victor Leena Chandra
, Shunmugavel Karthikeyan , Subramanian Selvasekarapandian, Manavalan Premalatha
und Sampath Monisha
Abstract
lithium ion conducting polymer electrolyte is one of the essential components of modern rechargeable lithium batteries because of its good interfacial contact with electrodes and effective mechanical properties. A solid lithium ion conducting polymer blend electrolyte is prepared using poly (vinyl acetate) (PVAc) and poly (methyl methacrylate) (PMMA) polymers with different molecular weight percentages (wt%) of lithium chloride (LiCl) by the solution casting technique with tetrahydrofuran as a solvent. The polymer electrolytes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), Thermogravimetry (TG), AC impedance spectroscopy and ionic transport measurements. XRD and FTIR studies confirm the amorphous nature of the polymer electrolyte and the complexation of salt with polymer. The thermal behavior of polymer electrolytes has been studied from DSC and TG. The highest conductivity obtained using AC impedance spectroscopy is 1.03×10−5 Scm−1 at 303 K for 70 wt%PVAc:30 wt%PMMA:0.8 wt% of LiCl polymer-salt complex. The plasticizer ethylene carbonate (EC) and nanofiller titania (TiO2) were added to the optimized high conducting blend polymer electrolyte. An enhancement in conductivity by one order of magnitude was observed for the plasticized 70 wt%PVAc-30 wt%PMMA-0.8 wt% LiCl polymer electrolyte at ambient temperature. The ionic conductivity value obtained using AC impedance spectroscopy for the plasticized 70 wt%PVAc-30 wt%PMMA-0.8 wt% LiCl polymer electrolyte was 1.03×10−4 Scm−1. The highest conductivity obtained for 70 wt%PVAc-30 wt%PMMA-0.8% LiCl-6 mg TiO2 was 4.45×10−4 Scm−1. Dielectric properties of polymer films are studied and discussed. The electrochemical stability of 1.69 V and 2.69 V was obtained for 70 wt%PVAc-30 wt%PMMA-0.8% LiCl and 70 wt%PVAc-30 wt%PMMA-0.8% LiCl-6 mg TiO2 polymer electrolytes, respectively, using linear sweep voltammetry. The value of Li+ ion transference number was estimated by the DC polarization method and was found to be 0.99 for the highest conducting 70 wt%PVAc-30 wt%PMMA-0.8 wt% LiCl-6 mg TiO2 nanocomposite polymer electrolyte.
References
[1] Hassoun J, Panero S, Reale P, Scrosati B. Adv. Mater. 2009, 21, 4807–4810.10.1002/adma.200900470Suche in Google Scholar
[2] Sanchez JY, Alloin F, Lepmi CP. Mol. Cryst. Liq. Cryst. 1998, 324, 257–266.10.1080/10587259808047163Suche in Google Scholar
[3] Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI. Desalination 2008, 234, 24–32.10.1016/j.desal.2007.09.066Suche in Google Scholar
[4] Kim DW. J. Power Sources 2000, 87, 78.10.1016/S0378-7753(99)00363-8Suche in Google Scholar
[5] Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC. Solid State Ionics 1996, 49, 86–88.10.1016/0167-2738(96)00330-XSuche in Google Scholar
[6] Wu ID, Chang FC. Polymer 2007, 48, 989–996.10.1016/j.polymer.2006.12.045Suche in Google Scholar
[7] Dias FB, Plomp L, Veldhuis JBJ. J. Power Sources 2000, 88, 169–191.10.1016/S0378-7753(99)00529-7Suche in Google Scholar
[8] Ahmad A, Rahman MYA, Su’ait MS. Physica B 2008, 403, 4128–4131.10.1016/j.physb.2008.08.021Suche in Google Scholar
[9] Bandara LRAK, Dissanayake MAKL, Mellander BE. Electrochim. Acta. 1998, 43, 1447–1451.10.1016/S0013-4686(97)10082-2Suche in Google Scholar
[10] Abbrent S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A. Polymer 2001, 42, 1407–1416.10.1016/S0032-3861(00)00517-6Suche in Google Scholar
[11] Ramesh S, Arof AK. Mater. Sci. Eng. B 2001, 85, 11–15.10.1016/S0921-5107(01)00555-4Suche in Google Scholar
[12] Yong-Tae K, Smotkin ES. Solid State Ionics 2002, 149, 29–37.10.1016/S0167-2738(02)00130-3Suche in Google Scholar
[13] Pitawala HMJC, Dissanayake MAKL, Seneviratne VA, Mellander B-E, Albinson I. J. Solid State Electrochem. 2008, 12, 783.10.1007/s10008-008-0505-7Suche in Google Scholar
[14] Sun HY, Takeda Y, Imanishi N, Yamamoto O, Sohn H-J. J. Electrochem. Soc. 2000, 147, 2462–2467.10.1149/1.1393554Suche in Google Scholar
[15] Weston JE, Steele BCH. Solid State Ionics 1982, 7, 75.10.1016/0167-2738(82)90072-8Suche in Google Scholar
[16] Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A. State Ionics 1999, 118, 73.10.1016/S0167-2738(98)00457-3Suche in Google Scholar
[17] Croce F, Appetecchi GB, Persi L, Scrosati B. Nature 1998, 394, 456.10.1038/28818Suche in Google Scholar
[18] Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R. J. Phys. Chem. B 1999, 103, 10632.10.1021/jp992307uSuche in Google Scholar
[19] Best AS, Ferry A, MacFarlane DR, Forsyth M. Solid State Ionics 1999, 126, 269.10.1016/S0167-2738(99)00239-8Suche in Google Scholar
[20] Capuano F, Croce F, Scrosati B. J. Electrochem. Soc. 1991, 138, 1918.10.1149/1.2085900Suche in Google Scholar
[21] Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E. J. Power Sources 2001, 97–98, 644–648002E10.1016/S0378-7753(01)00748-0Suche in Google Scholar
[22] Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Ηattori T. Solid State Ionics 2006, 177, 2679–2682.10.1016/j.ssi.2006.04.013Suche in Google Scholar
[23] Rajendran S, Bama VS. Prabhu MR. Ionics 2010, 16, 27–32.10.1007/s11581-009-0329-1Suche in Google Scholar
[24] The Ph.D. thesis titled. Characterization of Poly(Vinyl Acetate) Based Hybrid Polymer Electrolytes, Baskaran R, Ed. of Bharathiar University, Coimbatore, India, 2006.Suche in Google Scholar
[25] Mohammad Saleem Khan, Shakoor A. J. Chem. 2015. doi.org/10.1155/2015/695930Suche in Google Scholar
[26] Verdolotti L, Colini S, Porta G, Iannace S. Polym. Eng. Sci. 2011, DOI 10.1002/penSuche in Google Scholar
[27] Ng BC, Wong HY, Chew KW, Osman Z. Int. J. Electrochem. Sci. 2011, 6, 4355–4364.Suche in Google Scholar
[28] Hodge RM, Edward GH, Simon GP. Polymer 1996, 37, 1371–1376.10.1016/0032-3861(96)81134-7Suche in Google Scholar
[29] Ahmad A, Isa KB, Osman Z. Sains Malaysiana. 2011, 40, 691–694.Suche in Google Scholar
[30] Rajendran S, Sivakumar M, Subadevi R. Mater. Lett. 2004, 58, 641–649.10.1016/S0167-577X(03)00585-8Suche in Google Scholar
[31] Hasmi SA, Upadhyaya HM, Thakur AK, Verma AL. Ionics 2000, 6, 248–259.10.1007/BF02374074Suche in Google Scholar
[32] Selvasekarapandian S, Baskaran R, Kamishimab O, Kawamura J, Hattori T. Spectrochim. Acta Part A 2006, 65, 1234–1240.10.1016/j.saa.2006.02.026Suche in Google Scholar
[33] Wang Z, Huang B, Wang S, Xue R, Huang X, Chen L. Electrochim. Acta 1997, 42, 2611.10.1016/S0013-4686(96)00440-9Suche in Google Scholar
[34] Kumutha K, Alias Y. Spectrochim. Acta, Part A 2006, 64, 442–447.10.1016/j.saa.2005.07.044Suche in Google Scholar
[35] Ali AMM, Subban RHY, Bahron H, Winie T, Latif F, Yahya MZA. Ionics. 2008, 14, 491–500.10.1007/s11581-007-0199-3Suche in Google Scholar
[36] Alias Y, Ling I, Kumutha K. Ionics 2005, 11, 414–417.10.1007/BF02430258Suche in Google Scholar
[37] Anandan S, Sivakumar R. Phys. Status Solidi A 2009, 206, 343–350.10.1002/pssa.200824276Suche in Google Scholar
[38] Ravi M, Kiran Kumar K, Madhu Mohan V, Narasimha Rao VVR. Polym. Test. 2014, 33, 152–160.10.1016/j.polymertesting.2013.12.002Suche in Google Scholar
[39] Nithya H, Selvasekarapandian S, Christopher Selvin P, ArunKumar D, Hema M, Prakash D. Physica B. 2011, 406, 3367–337310.1016/j.physb.2011.05.047Suche in Google Scholar
[40] Nithya H, Selvasekarapandian S, Christopher Selvin P, Arun Kumara D, Kawamura J. Electrochim. Acta 2012, 66, 110–120.10.1016/j.electacta.2012.01.056Suche in Google Scholar
[41] Liu Y, Lee JY, Hong L. J. Appl. Polym. Sci. 2003, 89, 2815–2822.10.1002/app.12487Suche in Google Scholar
[42] Lim C-S, Teoh KH, Liew C-W, Ramesh S. Mater. Chem. Phys. 2014, 143, 661–667.10.1016/j.matchemphys.2013.09.051Suche in Google Scholar
[43] McNeill IC, Ahmed S, Memetea L. Polym. Degrad. Stab. 1995, 48, 89.10.1016/0141-3910(95)00021-DSuche in Google Scholar
[44] Irvine JTC, Sinclair DC, West AR. Adv. Mater. 1990, 2, 138.10.1002/adma.19900020304Suche in Google Scholar
[45] Vijaya N, Selvasekarapandian S, Karthikeyan S, Prabu M, Rajeswari N, Sanjeeviraja C. J. Appl. Polym. Sci. 2013, 127, 1538–1543.10.1002/app.37765Suche in Google Scholar
[46] Sikkanthar S, Karthikeyan S, Selvasekarapandian S, VinothPandi D, Nithya S, Sanjeeviraja C. J. Solid State Electrochem. 2015, 19, 987–999.10.1007/s10008-014-2697-3Suche in Google Scholar
[47] Leena Chandra MV, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Monisha S, Arulmozhi Packiaseeli S. Ionics 2016. DOI 10.1007/s11581-016-1763-5.Suche in Google Scholar
[48] Boukamp BA. Solid State Ionics 1986, 20, 31–44.10.1016/0167-2738(86)90031-7Suche in Google Scholar
[49] Boukamp BA. Solid State Ionics 1986, 18–19, 136–140.10.1016/0167-2738(86)90100-1Suche in Google Scholar
[50] Kumar R, Sharma JP, Sekhon SS. Eur. Polym. J. 2005, 41, 2718–2725.10.1016/j.eurpolymj.2005.05.010Suche in Google Scholar
[51] Ramesh S, Chai MF. Mater. Sci. Eng. B 2007, 139, 240–245.10.1016/j.mseb.2007.03.003Suche in Google Scholar
[52] Singh PK, Bhattacharya B, Mehra RM, Rhee H-W. Curr. Appl. Phys. 2011, 11, 616–619.10.1016/j.cap.2010.10.012Suche in Google Scholar
[53] Ali AMM, Yahya MZA, Bahron H, Subban RHY. Ionics 2006, 12, 4–5, 303–307.10.1007/s11581-006-0052-0Suche in Google Scholar
[54] Appetecchi GB, Alessandrini F, Carewska M, Caruso T, Prosini PP, Scaccia S, Passerini S. J. Power Sources 2001, 97–98, 790–794.10.1016/S0378-7753(01)00609-7Suche in Google Scholar
[55] Nookala M, Kumar B, Rodrigues S. J. Power Sources 2002, 111, 165–172.10.1016/S0378-7753(02)00303-8Suche in Google Scholar
[56] Forsyth M, MacFarlane DR, Best A, Adebahr J, Jacobsson P, Hill AJ. Solid State Ionics 2002, 147, 203–211.10.1016/S0167-2738(02)00017-6Suche in Google Scholar
[57] Capiglia C, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto O. Solid State Ionics 2002, 154–155, 7–14.10.1016/S0167-2738(02)00448-4Suche in Google Scholar
[58] Shen YJ, Jaipal Reddy M, Chu PP. Solid State Ionics 2004, 175, 747–750.10.1016/j.ssi.2003.10.020Suche in Google Scholar
[59] Miyamoto T, Shibayama K. J. Appl. Phys. 1973, 44, 5372.10.1063/1.1662158Suche in Google Scholar
[60] Mauritz KA. Macromolecules 1989, 22, 4483–4488.10.1021/ma00202a018Suche in Google Scholar
[61] Baskran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS. J. Power Source 2004, 134, 235.10.1016/j.jpowsour.2004.02.025Suche in Google Scholar
[62] Kremer F, Schonhals A, Eds., Broad Band Dielectric Spectroscopy, Springer, Verlag: Berlin, Heidelberg, 2003.Suche in Google Scholar
[63] Tareev B. Physics of the Dielectric Materials, MIR Publications: Moscow, 1979.Suche in Google Scholar
[64] The Ph.D. thesis titled Characterization of Polymer Electrolyte-Poly(Epichlorohydrin-Ethyleneoxide): LiClO4, Nithya H, Ed., of Bharathiar University, Coimbatore, India, 2011.Suche in Google Scholar
[65] Winnie T. Arof AK. Ionics 2006, 12, 149–152.10.1007/s11581-006-0026-2Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- Effect of the variation of the gating system on the magnetic properties of injection molded pole-oriented rings
- Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites
- Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites
- Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
- Understanding the interactive effects of material parameters governing the printer toner properties: a response surface study
- Quest for electroconducting structural polymers: CNTs/Polybond nanocomposites with improved electrical and mechanical properties
- Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites
- Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
- Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater
Artikel in diesem Heft
- Frontmatter
- Original articles
- Effect of the variation of the gating system on the magnetic properties of injection molded pole-oriented rings
- Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites
- Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites
- Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
- Understanding the interactive effects of material parameters governing the printer toner properties: a response surface study
- Quest for electroconducting structural polymers: CNTs/Polybond nanocomposites with improved electrical and mechanical properties
- Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites
- Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
- Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater